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CHAPTER 1

MicroPython libraries

��: Important summary of this section

• MicroPython implements a subset of Python functionality for each module.

• To ease extensibility, MicroPython versions of standard Python modules usually have u (“micro”)
prefix.

• Any particular MicroPython variant or port may miss any feature/function described in this general
documentation (due to resource constraints or other limitations).

This chapter describes modules (function and class libraries) which are built into MicroPython. There are
a few categories of such modules:

• Modules which implement a subset of standard Python functionality and are not intended to be ex-
tended by the user.

• Modules which implement a subset of Python functionality, with a provision for extension by the user
(via Python code).

• Modules which implement MicroPython extensions to the Python standard libraries.

• Modules specific to a particular MicroPython port and thus not portable.

Note about the availability of the modules and their contents: This documentation in general aspires to
describe all modules and functions/classes which are implemented in MicroPython project. However, Mi-
croPython is highly configurable, and each port to a particular board/embedded system makes available
only a subset of MicroPython libraries. For officially supported ports, there is an effort to either filter out
non-applicable items, or mark individual descriptions with “Availability:” clauses describing which ports
provide a given feature.

With that in mind, please still be warned that some functions/classes in a module (or even the entire module)
described in this documentation may be unavailable in a particular build of MicroPython on a particular
system. The best place to find general information of the availability/non-availability of a particular feature
is the “General Information” section which contains information pertaining to a specific MicroPython port.
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On some ports you are able to discover the available, built-in libraries that can be imported by entering the
following at the REPL:

help('modules')

Beyond the built-in libraries described in this documentation, many more modules from the Python standard
library, as well as further MicroPython extensions to it, can be found in micropython-lib.

1.1 Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of MicroPython.
They provide the core functionality of that module and are intended to be a drop-in replacement for the
standard Python library. Some modules below use a standard Python name, but prefixed with “u”, e.g.
ujson instead of json. This is to signify that such a module is micro-library, i.e. implements only a subset
of CPython module functionality. By naming them differently, a user has a choice to write a Python-level
module to extend functionality for better compatibility with CPython (indeed, this is what done by the
micropython-lib project mentioned above).

On some embedded platforms, where it may be cumbersome to add Python-level wrapper modules to achieve
naming compatibility with CPython, micro-modules are available both by their u-name, and also by their
non-u-name. The non-u-name can be overridden by a file of that name in your library path (sys.path). For
example, import json will first search for a file json.py (or package directory json) and load that module
if it is found. If nothing is found, it will fallback to loading the built-in ujson module.

1.1.1 Builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

class bytes
See CPython documentation: bytes.

callable()

chr()

classmethod()

compile()

class complex

2 Chapter 1. MicroPython libraries
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delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object
given by obj.

class dict

dir()

divmod()

enumerate()

eval()

exec()

filter()

class float

class frozenset

getattr()

globals()

hasattr()

hash()

hex()

id()

input()

class int

classmethod from_bytes(bytes, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview

min()

next()

class object

oct()

1.1. Python standard libraries and micro-libraries 3
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open()

ord()

pow()

print()

property()

range()

repr()

reversed()

round()

class set

setattr()

class slice
The slice builtin is the type that slice objects have.

sorted()

staticmethod()

class str

sum()

super()

class tuple

type()

zip()

Exceptions

exception AssertionError

exception AttributeError

exception Exception

exception ImportError

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception MemoryError

exception NameError

exception NotImplementedError

exception OSError
See CPython documentation: OSError. MicroPython doesn’t implement errno attribute, instead use
the standard way to access exception arguments: exc.args[0].

exception RuntimeError

4 Chapter 1. MicroPython libraries
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exception StopIteration

exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit.

exception TypeError
See CPython documentation: TypeError.

exception ValueError

exception ZeroDivisionError

1.1.2 array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable ])
Create array with elements of given type. Initial contents of the array are given by iterable. If it is not
provided, an empty array is created.

append(val)
Append new element val to the end of array, growing it.

extend(iterable)
Append new elements as contained in iterable to the end of array, growing it.

1.1.3 cmath – mathematical functions for complex numbers

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: cmath.

The cmath module provides some basic mathematical functions for working with complex numbers.

Availability: not available on WiPy and ESP8266. Floating point support required for this module.

Functions

cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

1.1. Python standard libraries and micro-libraries 5
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cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect(r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

Constants

cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circle’s circumference to its diameter

1.1.4 gc – control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: gc.

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can
still be initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is MicroPython extension.

gc.threshold([amount ])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when
a new allocation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is
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called, in addition to OOM, a collection will be triggered each time after amount bytes have been
allocated (in total, since the previous time such an amount of bytes have been allocated). amount is
usually specified as less than the full heap size, with the intention to trigger a collection earlier than
when the heap becomes exhausted, and in the hope that an early collection will prevent excessive
memory fragmentation. This is a heuristic measure, the effect of which will vary from application to
application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1
means a disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold(), but
due to different GC implementations, its signature and semantics are different.

1.1.5 math – mathematical functions

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required for this module.

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

math.cos(x)
Return the cosine of x.

1.1. Python standard libraries and micro-libraries 7
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math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple
(m, e) such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise
the relation 0.5 <= abs(m) < 1 holds.

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the
same sign as x.
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math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

math.trunc(x)
Return an integer, being x rounded towards 0.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

1.1.6 sys – system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: sys.

Functions

sys.exit(retval=0)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit
exception. If an argument is given, its value given as an argument to SystemExit.

sys.print_exception(exc, file=sys.stdout)
Print exception with a traceback to a file-like object file (or sys.stdout by default).

Difference to CPython

This is simplified version of a function which appears in the traceback module in CPython. Unlike
traceback.print_exception(), this function takes just exception value instead of exception type,
exception value, and traceback object; file argument should be positional; further arguments are not
supported. CPython-compatible traceback module can be found in micropython-lib.

1.1. Python standard libraries and micro-libraries 9
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Constants

sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("little" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following
attributes:

• name - string “micropython”

• version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other Python implementations
(note that it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented
in MicroPython.

sys.maxsize
Maximum value which a native integer type can hold on the current platform, or maximum value
representable by MicroPython integer type, if it’s smaller than platform max value (that is the case
for MicroPython ports without long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended
to not compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
# 64-bit (or more) platform
...

else:
# 32-bit (or less) platform
# Note that on 32-bit platform, value of bits may be less than 32
# (e.g. 31) due to peculiarities described above, so use "> 16",
# "> 32", "> 64" style of comparisons.

sys.modules
Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path
A mutable list of directories to search for imported modules.

sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of
the OS, e.g. "linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the
original MicroPython reference board. It thus can be used to distinguish one board from another. If
you need to check whether your program runs on MicroPython (vs other Python implementation), use
sys.implementation instead.

10 Chapter 1. MicroPython libraries
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sys.stderr
Standard error stream.

sys.stdin
Standard input stream.

sys.stdout
Standard output stream.

sys.version
Python language version that this implementation conforms to, as a string.

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints.

1.1.7 ubinascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in
both directions).

Functions

ubinascii.hexlify(data[, sep ])
Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator between hexadecimal values.

ubinascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

ubinascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8.
Returns a bytes object.

ubinascii.b2a_base64(data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline
character, as a bytes object.

1.1.8 ucollections – collection and container types

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

1.1. Python standard libraries and micro-libraries 11
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Classes

ucollections.deque(iterable, maxlen[, flags ])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either
side of the deque. New deques are created using the following arguments:

• iterable must be the empty tuple, and the new deque is created empty.

• maxlen must be specified and the deque will be bounded to this maximum length. Once the deque
is full, any new items added will discard items from the opposite end.

• The optional flags can be 1 to check for overflow when adding items.

As well as supporting bool and len, deque objects have the following methods:

deque.append(x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there
is no more room left.

deque.popleft()
Remove and return an item from the left side of the deque. Raises IndexError if no items are
present.

ucollections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A
namedtuple is a subclass of tuple which allows to access its fields not just by numeric index, but also
with an attribute access syntax using symbolic field names. Fields is a sequence of strings specifying
field names. For compatibility with CPython it can also be a a string with space-separated field named
(but this is less efficient). Example of use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

ucollections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is
iterated over, keys/items are returned in the order they were added:

from ucollections import OrderedDict

# To make benefit of ordered keys, OrderedDict should be initialized
# from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
# More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2

(����)
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w 5
b 3

1.1.9 uerrno – system error codes

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. A particular inventory of codes
depends on MicroPython port.

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. As mentioned above,
inventory of the codes depends on MicroPython port. Errors are usually accessible as exc.args[0]
where exc is an instance of OSError. Usage example:

try:
uos.mkdir("my_dir")

except OSError as exc:
if exc.args[0] == uerrno.EEXIST:

print("Directory already exists")

uerrno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST

1.1.10 uhashlib – hashing algorithms

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms de-
pends on a board. Among the algorithms which may be implemented:

• SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes. Included in the MicroPython core and any board is recommended
to provide this, unless it has particular code size constraints.

• SHA1 - A previous generation algorithm. Not recommended for new usages, but SHA1 is a part of
number of Internet standards and existing applications, so boards targeting network connectivity and
interoperatiability will try to provide this.

• MD5 - A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting
interoperatibility with legacy applications, will offer this.
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Constructors

class uhashlib.sha256([data ])
Create an SHA256 hasher object and optionally feed data into it.

class uhashlib.sha1([data ])
Create an SHA1 hasher object and optionally feed data into it.

class uhashlib.md5([data ])
Create an MD5 hasher object and optionally feed data into it.

Methods

hash.update(data)
Feed more binary data into hash.

hash.digest()
Return hash for all data passed through hash, as a bytes object. After this method is called, more
data cannot be fed into the hash any longer.

hash.hexdigest()
This method is NOT implemented. Use ubinascii.hexlify(hash.digest()) to achieve a similar
effect.

1.1.11 uheapq – heap queue algorithm

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: heapq.

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

uheapq.heappush(heap, item)
Push the item onto the heap.

uheapq.heappop(heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

1.1.12 uio – input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.
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Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to
few dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and
made implicit to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are
currently unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already
perform buffering on their side. Adding another layer of buffering is counter- productive (an issue known as
“bufferbloat”) and takes precious memory. Note that there still cases where buffering may be useful, so we
may introduce optional buffering support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur
short read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly
for writes. In CPython, unbuffered streams are automatically short operation susceptible, while buffered
are guarantee against them. The no short read/writes is an important trait, as it allows to develop more
concise and efficient programs - something which is highly desirable for MicroPython. So, while MicroPython
doesn’t support buffered streams, it still provides for no-short-operations streams. Whether there will be
short operations or not depends on each particular class’ needs, but developers are strongly advised to favor
no-short-operations behavior for the reasons stated above. For example, MicroPython sockets are guaranteed
to avoid short read/writes. Actually, at this time, there is no example of a short-operations stream class in
the core, and one would be a port-specific class, where such a need is governed by hardware peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking
behavior being another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never
wait for data either to arrive or be written - they read/write whatever possible, or signal lack of data
(or ability to write data). Clearly, this conflicts with “no-short-operations” policy, and indeed, a case of
non-blocking buffered (and this no-short-ops) streams is convoluted in CPython - in some places, such
combination is prohibited, in some it’s undefined or just not documented, in some cases it raises verbose
exceptions. The matter is much simpler in MicroPython: non-blocking stream are important for efficient
asynchronous operations, so this property prevails on the “no-short-ops” one. So, while blocking streams will
avoid short reads/writes whenever possible (the only case to get a short read is if end of file is reached, or in
case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may produce
short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython
text streams are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which
we may introduce buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy
above, and it’s not possible to implement, or subclass, a stream class in pure Python.

Functions

uio.open(name, mode=’r’, **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file
system) are required to support mode parameter, but support for other arguments vary by port.
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Classes

class uio.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate
this class directly.

class uio.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this
class directly.

class uio.StringIO([string ])
class uio.BytesIO([string ])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a nor-
mal file opened with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file
opened with “b” modifier). Initial contents of file-like objects can be specified with string parame-
ter (should be normal string for StringIO or bytes object for BytesIO). All the usual file methods
like read(), write(), seek(), flush(), close() are available on these objects, and additionally, a
following method:

getvalue()
Get the current contents of the underlying buffer which holds data.

class uio.StringIO(alloc_size)

class uio.BytesIO(alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes.
That means that writing that amount of bytes won’t lead to reallocation of the buffer, and thus won’t
hit out-of-memory situation or lead to memory fragmentation. These constructors are a MicroPython
extension and are recommended for usage only in special cases and in system-level libraries, not for
end-user applications.

Difference to CPython

These constructors are a MicroPython extension.

1.1.13 ujson – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dump(obj, stream)
Serialise obj to a JSON string, writing it to the given stream.

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.load(stream)
Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object.
The resulting object is returned.
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Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not
correctly formed.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

1.1.14 uos – basic “operating system” services

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: os.

The uos module contains functions for filesystem access and mounting, terminal redirection and duplication,
and the uname and urandom functions.

General functions

uos.uname()
Return a tuple (possibly a named tuple) containing information about the underlying machine and/or
its operating system. The tuple has five fields in the following order, each of them being a string:

• sysname – the name of the underlying system

• nodename – the network name (can be the same as sysname)

• release – the version of the underlying system

• version – the MicroPython version and build date

• machine – an identifier for the underlying hardware (eg board, CPU)

uos.urandom(n)
Return a bytes object with n random bytes. Whenever possible, it is generated by the hardware
random number generator.

Filesystem access

uos.chdir(path)
Change current directory.

uos.getcwd()
Get the current directory.

uos.ilistdir([dir ])
This function returns an iterator which then yields tuples corresponding to the entries in the directory
that it is listing. With no argument it lists the current directory, otherwise it lists the directory given
by dir.

The tuples have the form (name, type, inode[, size]):

• name is a string (or bytes if dir is a bytes object) and is the name of the entry;

• type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for
regular files;

• inode is an integer corresponding to the inode of the file, and may be 0 for filesystems that don’t
have such a notion.
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• Some platforms may return a 4-tuple that includes the entry’s size. For file entries, size is an
integer representing the size of the file or -1 if unknown. Its meaning is currently undefined for
directory entries.

uos.listdir([dir ])
With no argument, list the current directory. Otherwise list the given directory.

uos.mkdir(path)
Create a new directory.

uos.remove(path)
Remove a file.

uos.rmdir(path)
Remove a directory.

uos.rename(old_path, new_path)
Rename a file.

uos.stat(path)
Get the status of a file or directory.

uos.statvfs(path)
Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size

• f_frsize – fragment size

• f_blocks – size of fs in f_frsize units

• f_bfree – number of free blocks

• f_bavail – number of free blocks for unpriviliged users

• f_files – number of inodes

• f_ffree – number of free inodes

• f_favail – number of free inodes for unpriviliged users

• f_flag – mount flags

• f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0
as they can be unavailable in a port-specific implementation.

uos.sync()
Sync all filesystems.

Terminal redirection and duplication

uos.dupterm(stream_object, index=0)
Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like object. The
stream_object argument must be a native stream object, or derive from uio.IOBase and implement
the readinto() and write() methods. The stream should be in non-blocking mode and readinto()
should return None if there is no data available for reading.

After calling this function all terminal output is repeated on this stream, and any input that is available
on the stream is passed on to the terminal input.
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The index parameter should be a non-negative integer and specifies which duplication slot is set. A
given port may implement more than one slot (slot 0 will always be available) and in that case terminal
input and output is duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on the slot given by index.

The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple “real” filesystems within
this VFS. Filesystem objects can be mounted at either the root of the VFS, or at a subdirectory that
lives in the root. This allows dynamic and flexible configuration of the filesystem that is seen by Python
programs. Ports that have this functionality provide the mount() and umount() functions, and possibly
various filesystem implementations represented by VFS classes.

uos.mount(fsobj, mount_point, *, readonly)
Mount the filesystem object fsobj at the location in the VFS given by the mount_point string. fsobj
can be a a VFS object that has a mount() method, or a block device. If it’s a block device then
the filesystem type is automatically detected (an exception is raised if no filesystem was recognised).
mount_point may be '/' to mount fsobj at the root, or '/<name>' to mount it at a subdirectory under
the root.

If readonly is True then the filesystem is mounted read-only.

During the mount process the method mount() is called on the filesystem object.

Will raise OSError(EPERM) if mount_point is already mounted.

uos.umount(mount_point)
Unmount a filesystem. mount_point can be a string naming the mount location, or a previously-
mounted filesystem object. During the unmount process the method umount() is called on the filesys-
tem object.

Will raise OSError(EINVAL) if mount_point is not found.

class uos.VfsFat(block_dev)
Create a filesystem object that uses the FAT filesystem format. Storage of the FAT filesystem is
provided by block_dev. Objects created by this constructor can be mounted using mount().

static mkfs(block_dev)
Build a FAT filesystem on block_dev.

Block devices

A block device is an object which implements the block protocol, which is a set of methods described below
by the AbstractBlockDev class. A concrete implementation of this class will usually allow access to the
memory-like functionality a piece of hardware (like flash memory). A block device can be used by a particular
filesystem driver to store the data for its filesystem.

class uos.AbstractBlockDev(...)
Construct a block device object. The parameters to the constructor are dependent on the specific block
device.

readblocks(block_num, buf)
Starting at the block given by the index block_num, read blocks from the device into buf (an array
of bytes). The number of blocks to read is given by the length of buf, which will be a multiple of
the block size.
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writeblocks(block_num, buf)
Starting at the block given by the index block_num, write blocks from buf (an array of bytes) to
the device. The number of blocks to write is given by the length of buf, which will be a multiple
of the block size.

ioctl(op, arg)
Control the block device and query its parameters. The operation to perform is given by op which
is one of the following integers:

• 1 – initialise the device (arg is unused)

• 2 – shutdown the device (arg is unused)

• 3 – sync the device (arg is unused)

• 4 – get a count of the number of blocks, should return an integer (arg is unused)

• 5 – get the number of bytes in a block, should return an integer, or None in which case the
default value of 512 is used (arg is unused)

By way of example, the following class will implement a block device that stores its data in RAM using a
bytearray:

class RAMBlockDev:
def __init__(self, block_size, num_blocks):

self.block_size = block_size
self.data = bytearray(block_size * num_blocks)

def readblocks(self, block_num, buf):
for i in range(len(buf)):

buf[i] = self.data[block_num * self.block_size + i]

def writeblocks(self, block_num, buf):
for i in range(len(buf)):

self.data[block_num * self.block_size + i] = buf[i]

def ioctl(self, op, arg):
if op == 4: # get number of blocks

return len(self.data) // self.block_size
if op == 5: # get block size

return self.block_size

It can be used as follows:

import uos

bdev = RAMBlockDev(512, 50)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev)
uos.mount(vfs, '/ramdisk')

1.1.15 ure – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: re.
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This module implements regular expression operations. Regular expression syntax supported is a subset of
CPython re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

. Match any character.

[...] Match set of characters. Individual characters and ranges are supported, including negated sets (e.g.
[^a-c]).

^ Match the start of the string.

$ Match the end of the string.

? Match zero or one of the previous sub-pattern.

* Match zero or more of the previous sub-pattern.

+ Match one or more of the previous sub-pattern.

?? Non-greedy version of ?, match zero or one, with the preference for zero.

*? Non-greedy version of *, match zero or more, with the preference for the shortest match.

+? Non-greedy version of +, match one or more, with the preference for the shortest match.

| Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...) Grouping. Each group is capturing (a substring it captures can be accessed with match.group()
method).

\d Matches digit. Equivalent to [0-9].

\D Matches non-digit. Equivalent to [^0-9].

\s Matches whitespace. Equivalent to [ \t-\r].

\S Matches non-whitespace. Equivalent to [^ \t-\r].

\w Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

\W Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].

\ Escape character. Any other character following the backslash, except for those listed above, is taken
literally. For example, \* is equivalent to literal * (not treated as the * operator). Note that \r, \n,
etc. are not handled specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not
recommended to use raw Python strings (r"") for regular expressions. For example, r"\r\n" when
used as the regular expression is equivalent to "rn". To match CR character followed by LF, use
"\r\n".

NOT SUPPORTED:

• counted repetitions ({m,n})

• named groups ((?P<name>...))

• non-capturing groups ((?:...))

• more advanced assertions (\b, \B)

• special character escapes like \r, \n - use Python’s own escaping instead

• etc.

Example:
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import ure

# As ure doesn't support escapes itself, use of r"" strings is not
# recommended.
regex = ure.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

# Result:
# ['line1', 'line2', 'line3', '', '']

Functions

ure.compile(regex_str[, flags ])
Compile regular expression, return regex object.

ure.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

ure.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position
which matches regex (which still may be 0 if regex is anchored).

ure.sub(regex_str, replace, string, count=0, flags=0)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the
new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number>
and \g<number> can be used to expand to the corresponding group (or an empty string for unmatched
groups). If replace is a function then it must take a single argument (the match) and should return a
replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made.
The flags argument is ignored.

Note: availability of this function depends on MicroPython port.

ure.DEBUG
Flag value, display debug information about compiled expression. (Availability depends on
MicroPython port.)

Regex objects

Compiled regular expression. Instances of this class are created using ure.compile().

regex.match(string)
regex.search(string)
regex.sub(replace, string, count=0, flags=0)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more
efficient if the same regex is applied to multiple strings.

regex.split(string, max_split=-1)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform.
Returns list of strings (there may be up to max_split+1 elements if it’s specified).
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Match objects

Match objects as returned by match() and search() methods, and passed to the replacement function in
sub().

match.group(index)
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only
numeric groups are supported.

match.groups()
Return a tuple containing all the substrings of the groups of the match.

Note: availability of this method depends on MicroPython port.

match.start([index ])
match.end([index ])

Return the index in the original string of the start or end of the substring group that was matched.
index defaults to the entire group, otherwise it will select a group.

Note: availability of these methods depends on MicroPython port.

match.span([index ])
Returns the 2-tuple (match.start(index), match.end(index)).

Note: availability of this method depends on MicroPython port.

1.1.16 uselect – wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple streams (select streams which are
ready for operations).

Functions

uselect.poll()
Create an instance of the Poll class.

uselect.select(rlist, wlist, xlist[, timeout ])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of
Poll is recommended instead.

class Poll

Methods

poll.register(obj[, eventmask ])
Register stream obj for polling. eventmask is logical OR of:

• uselect.POLLIN - data available for reading

• uselect.POLLOUT - more data can be written
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Note that flags like uselect.POLLHUP and uselect.POLLERR are not valid as input eventmask (these
are unsolicited events which will be returned from poll() regardless of whether they are asked for).
This semantics is per POSIX.

eventmask defaults to uselect.POLLIN | uselect.POLLOUT.

It is OK to call this function multiple times for the same obj. Successive calls will update obj’s
eventmask to the value of eventmask (i.e. will behave as modify()).

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll(timeout=-1)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with
optional timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (obj, event, …) tuples. There may be other elements in tuple, depending on a platform
and version, so don’t assume that its size is 2. The event element specifies which events happened
with a stream and is a combination of uselect.POLL* constants described above. Note that flags
uselect.POLLHUP and uselect.POLLERR can be returned at any time (even if were not asked for),
and must be acted on accordingly (the corresponding stream unregistered from poll and likely closed),
because otherwise all further invocations of poll() may return immediately with these flags set for
this stream again.

In case of timeout, an empty list is returned.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll(timeout=-1, flags=0)
Like poll.poll(), but instead returns an iterator which yields a callee-owned tuple. This function
provides an efficient, allocation-free way to poll on streams.

If flags is 1, one-shot behavior for events is employed: streams for which events happened will have
their event masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such
a stream won’t be processed until new mask is set with poll.modify(). This behavior is useful for
asynchronous I/O schedulers.

Difference to CPython

This function is a MicroPython extension.

1.1.17 usocket – socket module

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: socket.

This module provides access to the BSD socket interface.

Difference to CPython
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For efficiency and consistency, socket objects in MicroPython implement a stream (file-like) interface directly.
In CPython, you need to convert a socket to a file-like object using makefile() method. This method is
still supported by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to
use it.

Socket address format(s)

The native socket address format of the usocket module is an opaque data type returned by getaddrinfo
function, which must be used to resolve textual address (including numeric addresses):

sockaddr = usocket.getaddrinfo('www.micropython.org', 80)[0][-1]
# You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1', 80)[0][-1]
# Now you can use that address
sock.connect(addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way
to work with addresses.

However, socket module (note the difference with native MicroPython usocket module described here)
provides CPython-compatible way to specify addresses using tuples, as described below. Note that depending
on a MicroPython port, socket module can be builtin or need to be installed from micropython-lib (as
in the case of MicroPython Unix port), and some ports still accept only numeric addresses in the tuple
format, and require to use getaddrinfo function to resolve domain names.

Summing up:

• Always use getaddrinfo when writing portable applications.

• Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your
port supports them.

Tuple address format for socket module:

• IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address,
e.g. "8.8.8.8", and port is and integer port number in the range 1-65535. Note the domain names
are not accepted as ipv4_address, they should be resolved first using usocket.getaddrinfo().

• IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation
numeric IPv6 address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535.
flowinfo must be 0. scopeid is the interface scope identifier for link-local addresses. Note the domain
names are not accepted as ipv6_address, they should be resolved first using usocket.getaddrinfo().
Availability of IPv6 support depends on a MicroPython port.

Functions

usocket.socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP)
Create a new socket using the given address family, socket type and protocol number. Note that
specifying proto in most cases is not required (and not recommended, as some MicroPython ports may
omit IPPROTO_* constants). Instead, type argument will select needed protocol automatically:

# Create STREAM TCP socket
socket(AF_INET, SOCK_STREAM)
# Create DGRAM UDP socket
socket(AF_INET, SOCK_DGRAM)
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usocket.getaddrinfo(host, port, af=0, type=0, proto=0, flags=0)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments
for creating a socket connected to that service. Arguments af, type, and proto (which have the same
meaning as for the socket() function) can be used to filter which kind of addresses are returned. If
a parameter is not specified or zero, all combinations of addresses can be returned (requiring filtering
on the user side).

The resulting list of 5-tuples has the following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = usocket.socket()
# This assumes that if "type" is not specified, an address for
# SOCK_STREAM will be returned, which may be not true
s.connect(usocket.getaddrinfo('www.micropython.org', 80)[0][-1])

Recommended use of filtering params:

s = usocket.socket()
# Guaranteed to return an address which can be connect'ed to for
# stream operation.
s.connect(usocket.getaddrinfo('www.micropython.org', 80, 0, SOCK_STREAM)[0][-1])

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function.
MicroPython doesn’t have socket.gaierror and raises OSError directly. Note that error numbers
of getaddrinfo() form a separate namespace and may not match error numbers from the uerrno
module. To distinguish getaddrinfo() errors, they are represented by negative numbers, whereas
standard system errors are positive numbers (error numbers are accessible using e.args[0] property
from an exception object). The use of negative values is a provisional detail which may change in the
future.

usocket.inet_ntop(af, bin_addr)
Convert a binary network address bin_addr of the given address family af to a textual representation:

>>> usocket.inet_ntop(usocket.AF_INET, b"\x7f\0\0\1")
'127.0.0.1'

usocket.inet_pton(af, txt_addr)
Convert a textual network address txt_addr of the given address family af to a binary representation:

>>> usocket.inet_pton(usocket.AF_INET, "1.2.3.4")
b'\x01\x02\x03\x04'

Constants

usocket.AF_INET
usocket.AF_INET6

Address family types. Availability depends on a particular MicroPython port.

usocket.SOCK_STREAM
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usocket.SOCK_DGRAM
Socket types.

usocket.IPPROTO_UDP
usocket.IPPROTO_TCP

IP protocol numbers. Availability depends on a particular MicroPython port. Note that you don’t
need to specify these in a call to usocket.socket(), because SOCK_STREAM socket type automatically
selects IPPROTO_TCP, and SOCK_DGRAM - IPPROTO_UDP. Thus, the only real use of these constants is as
an argument to setsockopt().

usocket.SOL_*
Socket option levels (an argument to setsockopt()). The exact inventory depends on a MicroPython
port.

usocket.SO_*
Socket options (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:

usocket.IPPROTO_SEC
Special protocol value to create SSL-compatible socket.

class socket

Methods

socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket
object will fail. The remote end will receive EOF indication if supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended to close()
them explicitly as soon you finished working with them.

socket.bind(address)
Bind the socket to address. The socket must not already be bound.

socket.listen([backlog ])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it’s lower, it
will be set to 0); and specifies the number of unaccepted connections that the system will allow before
refusing new connections. If not specified, a default reasonable value is chosen.

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive data
on the connection, and address is the address bound to the socket on the other end of the connection.

socket.connect(address)
Connect to a remote socket at address.

socket.send(bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes
sent, which may be smaller than the length of data (“short write”).

socket.sendall(bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send(), this
method will try to send all of data, by sending data chunk by chunk consecutively.
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The behavior of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it’s
recommended to use write() method instead, which has the same “no short writes” policy for blocking
sockets, and will return number of bytes sent on non-blocking sockets.

socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The
maximum amount of data to be received at once is specified by bufsize.

socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination
socket is specified by address.

socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object
representing the data received and address is the address of the socket sending the data.

socket.setsockopt(level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket
module (SO_* etc.). The value can be an integer or a bytes-like object representing a buffer.

socket.settimeout(value)
Note: Not every port supports this method, see below.

Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point
number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will
raise an OSError exception if the timeout period value has elapsed before the operation has completed.
If zero is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking
mode.

Not every MicroPython port supports this method. A more portable and generic solution is to use
uselect.poll object. This allows to wait on multiple objects at the same time (and not just on
sockets, but on generic stream objects which support polling). Example:

# Instead of:
s.settimeout(1.0) # time in seconds
s.read(10) # may timeout

# Use:
poller = uselect.poll()
poller.register(s, uselect.POLLIN)
res = poller.poll(1000) # time in milliseconds
if not res:

# s is still not ready for input, i.e. operation timed out

Difference to CPython

CPython raises a socket.timeout exception in case of timeout, which is an OSError subclass. Mi-
croPython raises an OSError directly instead. If you use except OSError: to catch the exception,
your code will work both in MicroPython and CPython.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else
to blocking mode.

This method is a shorthand for certain settimeout() calls:

• sock.setblocking(True) is equivalent to sock.settimeout(None)
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• sock.setblocking(False) is equivalent to sock.settimeout(0)

socket.makefile(mode=’rb’, buffering=0)
Return a file object associated with the socket. The exact returned type depends on the arguments
given to makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s
arguments: encoding, errors and newline are not supported.

Difference to CPython

As MicroPython doesn’t support buffered streams, values of buffering parameter is ignored and treated
as if it was 0 (unbuffered).

Difference to CPython

Closing the file object returned by makefile() WILL close the original socket as well.

socket.read([size ])
Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data
available from the socket until EOF; as such the method will not return until the socket is closed. This
function tries to read as much data as requested (no “short reads”). This may be not possible with
non-blocking socket though, and then less data will be returned.

socket.readinto(buf [, nbytes ])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes. Just as read(), this method follows “no short reads” policy.

Return value: number of bytes read and stored into buf.

socket.readline()
Read a line, ending in a newline character.

Return value: the line read.

socket.write(buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short
writes”). This may be not possible with a non-blocking socket though, and returned value will be less
than the length of buf.

Return value: number of bytes written.

exception usocket.error
MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket.error exception which is now deprecated, and is an alias of OSError.
In MicroPython, use OSError directly.

1.1.18 ussl – SSL/TLS module

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: ssl.

This module provides access to Transport Layer Security (previously and widely known as “Secure Sockets
Layer”) encryption and peer authentication facilities for network sockets, both client-side and server-side.
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Functions

ussl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE,
ca_certs=None)

Takes a stream sock (usually usocket.socket instance of SOCK_STREAM type), and returns an instance
of ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the
usual stream interface methods like read(), write(), etc. In MicroPython, the returned object does
not expose socket interface and methods like recv(), send(). In particular, a server-side SSL socket
should be created from a normal socket returned from accept() on a non-SSL listening server socket.

Depending on the underlying module implementation in a particular MicroPython port, some or all
keyword arguments above may be not supported.

��: Some implementations of ussl module do NOT validate server certificates, which makes an SSL
connection established prone to man-in-the-middle attacks.

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ussl.CERT_NONE
ussl.CERT_OPTIONAL
ussl.CERT_REQUIRED

Supported values for cert_reqs parameter.

1.1.19 ustruct – pack and unpack primitive data types

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, s, P, f, d (the latter 2 depending on the floating-point
support).

Functions

ustruct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

ustruct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, … according to the format string fmt. The return value is a bytes object
encoding the values.

ustruct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, … according to the format string fmt into a buffer starting at offset. offset may
be negative to count from the end of buffer.
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ustruct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked
values.

ustruct.unpack_from(fmt, data, offset=0)
Unpack from the data starting at offset according to the format string fmt. offset may be negative to
count from the end of buffer. The return value is a tuple of the unpacked values.

1.1.20 utime – time related functions

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: time.

The utime module provides functions for getting the current time and date, measuring time intervals, and
for delays.

Time Epoch: Unix port uses standard for POSIX systems epoch of 1970-01-01 00:00:00 UTC. However,
embedded ports use epoch of 2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with
underlying OS (including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar
time is responsibility of OS/RTOS and is done outside of MicroPython, it just uses OS API to query
date/time. On baremetal ports however system time depends on machine.RTC() object. The current
calendar time may be set using machine.RTC().datetime(tuple) function, and maintained by following
means:

• By a backup battery (which may be an additional, optional component for a particular board).

• Using networked time protocol (requires setup by a port/user).

• Set manually by a user on each power-up (many boards then maintain RTC time across hard resets,
though some may require setting it again in such case).

If actual calendar time is not maintained with a system/MicroPython RTC, functions below which require
reference to current absolute time may behave not as expected.

Functions

utime.localtime([secs ])
Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year,
month, mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current
time from the RTC is used.

• year includes the century (for example 2014).

• month is 1-12

• mday is 1-31

• hour is 0-23

• minute is 0-59

• second is 0-59

• weekday is 0-6 for Mon-Sun

• yearday is 1-366
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utime.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per
localtime. It returns an integer which is the number of seconds since Jan 1, 2000.

utime.sleep(seconds)
Sleep for the given number of seconds. Some boards may accept seconds as a floating-point number
to sleep for a fractional number of seconds. Note that other boards may not accept a floating-point
argument, for compatibility with them use sleep_ms() and sleep_us() functions.

utime.sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.

utime.sleep_us(us)
Delay for given number of microseconds, should be positive or 0.

utime.ticks_ms()
Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after
some value.

The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify
discussion. Period of the values is TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is
guaranteed to be a power of two, but otherwise may differ from port to port. The same period
value is used for all of ticks_ms(), ticks_us(), ticks_cpu() functions (for simplicity). Thus, these
functions will return a value in range [0 .. TICKS_MAX], inclusive, total TICKS_PERIOD values.
Note that only non-negative values are used. For the most part, you should treat values returned by
these functions as opaque. The only operations available for them are ticks_diff() and ticks_add()
functions described below.

Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=)
directly on these value will lead to invalid result. Performing mathematical operations and then passing
their results as arguments to ticks_diff() or ticks_add() will also lead to invalid results from the
latter functions.

utime.ticks_us()
Just like ticks_ms() above, but in microseconds.

utime.ticks_cpu()
Similar to ticks_ms() and ticks_us(), but with the highest possible resolution in the system. This
is usually CPU clocks, and that’s why the function is named that way. But it doesn’t have to be a
CPU clock, some other timing source available in a system (e.g. high-resolution timer) can be used
instead. The exact timing unit (resolution) of this function is not specified on utime module level, but
documentation for a specific port may provide more specific information. This function is intended for
very fine benchmarking or very tight real-time loops. Avoid using it in portable code.

Availability: Not every port implements this function.

utime.ticks_add(ticks, delta)
Offset ticks value by a given number, which can be either positive or negative. Given a ticks value,
this function allows to calculate ticks value delta ticks before or after it, following modular-arithmetic
definition of tick values (see ticks_ms() above). ticks parameter must be a direct result of call to
ticks_ms(), ticks_us(), or ticks_cpu() functions (or from previous call to ticks_add()). However,
delta can be an arbitrary integer number or numeric expression. ticks_add() is useful for calculating
deadlines for events/tasks. (Note: you must use ticks_diff() function to work with deadlines.)

Examples:

# Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

(����)
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# Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:

do_a_little_of_something()

# Find out TICKS_MAX used by this port
print(ticks_add(0, -1))

utime.ticks_diff(ticks1, ticks2)
Measure ticks difference between values returned from ticks_ms(), ticks_us(), or ticks_cpu()
functions, as a signed value which may wrap around.

The argument order is the same as for subtraction operator, ticks_diff(ticks1, ticks2) has the
same meaning as ticks1 - ticks2. However, values returned by ticks_ms(), etc. functions may
wrap around, so directly using subtraction on them will produce incorrect result. That is why
ticks_diff() is needed, it implements modular (or more specifically, ring) arithmetics to produce
correct result even for wrap-around values (as long as they not too distant inbetween, see below).
The function returns signed value in the range [-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1]
(that’s a typical range definition for two’s-complement signed binary integers). If the result is neg-
ative, it means that ticks1 occurred earlier in time than ticks2. Otherwise, it means that ticks1
occurred after ticks2. This holds only if ticks1 and ticks2 are apart from each other for no more than
TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if
two tick values are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function.
However, if TICKS_PERIOD/2 of real-time ticks has passed between them, the function will return
-TICKS_PERIOD/2 instead, i.e. result value will wrap around to the negative range of possible
values.

Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor
passing of time except a standard 12-notch clock. Then if you look at dial-plate now, and don’t look
again for another 13 hours (e.g., if you fall for a long sleep), then once you finally look again, it may
seem to you that only 1 hour has passed. To avoid this mistake, just look at the clock regularly. Your
application should do the same. “Too long sleep” metaphor also maps directly to application behavior:
don’t let your application run any single task for too long. Run tasks in steps, and do time-keeping
inbetween.

ticks_diff() is designed to accommodate various usage patterns, among them:

• Polling with timeout. In this case, the order of events is known, and you will deal only with
positive results of ticks_diff():

# Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:

if time.ticks_diff(time.ticks_us(), start) > 500:
raise TimeoutError

• Scheduling events. In this case, ticks_diff() result may be negative if an event is overdue:

# This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(scheduled_time, now) > 0:

print("Too early, let's nap")
sleep_ms(ticks_diff(scheduled_time, now))
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task.run()
elif ticks_diff(scheduled_time, now) == 0:

print("Right at time!")
task.run()

elif ticks_diff(scheduled_time, now) < 0:
print("Oops, running late, tell task to run faster!")
task.run(run_faster=true)

Note: Do not pass time() values to ticks_diff(), you should use normal mathematical operations
on them. But note that time() may (and will) also overflow. This is known as https://en.wikipedia.
org/wiki/Year_2038_problem .

utime.time()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set
and maintained as described above. If an RTC is not set, this function returns number of seconds since
a port-specific reference point in time (for embedded boards without a battery-backed RTC, usually
since power up or reset). If you want to develop portable MicroPython application, you should not rely
on this function to provide higher than second precision. If you need higher precision, use ticks_ms()
and ticks_us() functions, if you need calendar time, localtime() without an argument is a better
choice.

Difference to CPython

In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a
floating-point, usually having microsecond precision. With MicroPython, only Unix port uses the same
Epoch, and if floating-point precision allows, returns sub-second precision. Embedded hardware usually
doesn’t have floating-point precision to represent both long time ranges and subsecond precision, so
they use integer value with second precision. Some embedded hardware also lacks battery-powered
RTC, so returns number of seconds since last power-up or from other relative, hardware-specific point
(e.g. reset).

1.1.21 uzlib – zlib decompression

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: zlib.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in
zlib library and gzip archiver). Compression is not yet implemented.

Functions

uzlib.decompress(data, wbits=0, bufsize=0)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression
(8-15, the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed
to be zlib stream (with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE
stream. bufsize parameter is for compatibility with CPython and is ignored.

class uzlib.DecompIO(stream, wbits=0)
Create a stream wrapper which allows transparent decompression of compressed data in another
stream. This allows to process compressed streams with data larger than available heap size. In
addition to values described in decompress(), wbits may take values 24..31 (16 + 8..15), meaning that
input stream has gzip header.
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Difference to CPython

This class is MicroPython extension. It’s included on provisional basis and may be changed considerably
or removed in later versions.

1.1.22 _thread – multithreading support

This module implements a subset of the corresponding CPython module, as described below. For more
information, refer to the original CPython documentation: _thread.

This module implements multithreading support.

This module is highly experimental and its API is not yet fully settled and not yet described in this docu-
mentation.

1.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

1.2.1 btree – simple BTree database

The btree module implements a simple key-value database using external storage (disk files, or in general
case, a random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a
key value, a database also supports efficient ordered range scans (retrieval of values with the keys in a given
range). On the application interface side, BTree database work as close a possible to a way standard dict
type works, one notable difference is that both keys and values must be bytes objects (so, if you want to
store objects of other types, you need to serialize them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

# First, we need to open a stream which holds a database
# This is usually a file, but can be in-memory database
# using uio.BytesIO, a raw flash partition, etc.
# Oftentimes, you want to create a database file if it doesn't
# exist and open if it exists. Idiom below takes care of this.
# DO NOT open database with "a+b" access mode.
try:

f = open("mydb", "r+b")
except OSError:

f = open("mydb", "w+b")

# Now open a database itself
db = btree.open(f)

# The keys you add will be sorted internally in the database
db[b"3"] = b"three"

(����)

1.2. MicroPython-specific libraries 35

https://docs.python.org/3.5/library/_thread.html#module-_thread


MicroPython Documentation, �� 1.11

(���)

db[b"1"] = b"one"
db[b"2"] = b"two"

# Assume that any changes are cached in memory unless
# explicitly flushed (or database closed). Flush database
# at the end of each "transaction".
db.flush()

# Prints b'two'
print(db[b"2"])

# Iterate over sorted keys in the database, starting from b"2"
# until the end of the database, returning only values.
# Mind that arguments passed to values() method are *key* values.
# Prints:
# b'two'
# b'three'
for word in db.values(b"2"):

print(word)

del db[b"2"]

# No longer true, prints False
print(b"2" in db)

# Prints:
# b"1"
# b"3"
for key in db:

print(key)

db.close()

# Don't forget to close the underlying stream!
f.close()

Functions

btree.open(stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional
and keyword-only, and allow to tweak advanced parameters of the database operation (most users will
not need them):

• flags - Currently unused.

• pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, a port-specific
default will be used, optimized for port’s memory usage and/or performance.

• cachesize - Suggested memory cache size in bytes. For a board with enough memory using larger
values may improve performance. Cache policy is as follows: entire cache is not allocated at
once; instead, accessing a new page in database will allocate a memory buffer for it, until value
specified by cachesize is reached. Then, these buffers will be managed using LRU (least recently
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used) policy. More buffers may still be allocated if needed (e.g., if a database contains big keys
and/or values). Allocated cache buffers aren’t reclaimed.

• minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional
methods described below.

Methods

btree.close()
Close the database. It’s mandatory to close the database at the end of processing, as some unwritten
data may be still in the cache. Note that this does not close underlying stream with which the database
was opened, it should be closed separately (which is also mandatory to make sure that data flushed
from buffer to the underlying storage).

btree.flush()
Flush any data in cache to the underlying stream.

btree.__getitem__(key)
btree.get(key, default=None)
btree.__setitem__(key, val)
btree.__detitem__(key)
btree.__contains__(key)

Standard dictionary methods.

btree.__iter__()
A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.keys([start_key[, end_key[, flags ] ] ])
btree.values([start_key[, end_key[, flags ] ] ])
btree.items([start_key[, end_key[, flags ] ] ])

These methods are similar to standard dictionary methods, but also can take optional parameters to
iterate over a key sub-range, instead of the entire database. Note that for all 3 methods, start_key
and end_key arguments represent key values. For example, values() method will iterate over values
corresponding to they key range given. None values for start_key means “from the first key”, no
end_key or its value of None means “until the end of database”. By default, range is inclusive of
start_key and exclusive of end_key, you can include end_key in iteration by passing flags of btree.
INCL. You can iterate in descending key direction by passing flags of btree.DESC . The flags values can
be ORed together.

Constants

btree.INCL
A flag for keys(), values(), items() methods to specify that scanning should be inclusive of the end
key.

btree.DESC
A flag for keys(), values(), items() methods to specify that scanning should be in descending
direction of keys.

1.2.2 framebuf — Frame buffer manipulation

This module provides a general frame buffer which can be used to create bitmap images, which can then be
sent to a display.
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class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text
and even other FrameBuffer’s. It is useful when generating output for displays.

For example:

import framebuf

# FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = FrameBuffer(bytearray(10 * 100 * 2), 10, 100, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 10, 96, 0xffff)

Constructors

class framebuf.FrameBuffer(buffer, width, height, format, stride=width)
Construct a FrameBuffer object. The parameters are:

• buffer is an object with a buffer protocol which must be large enough to contain every pixel defined
by the width, height and format of the FrameBuffer.

• width is the width of the FrameBuffer in pixels

• height is the height of the FrameBuffer in pixels

• format specifies the type of pixel used in the FrameBuffer; permissible values are listed under
Constants below. These set the number of bits used to encode a color value and the layout of
these bits in buffer. Where a color value c is passed to a method, c is a small integer with an
encoding that is dependent on the format of the FrameBuffer.

• stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This
defaults to width but may need adjustments when implementing a FrameBuffer within another
larger FrameBuffer or screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimen-
sions may lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.fill(c)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel(x, y[, c ])
If c is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the
given color.

FrameBuffer.hline(x, y, w, c)

FrameBuffer.vline(x, y, h, c)

FrameBuffer.line(x1, y1, x2, y2, c)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The line method
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draws the line up to a second set of coordinates whereas the hline and vline methods draw horizontal
and vertical lines respectively up to a given length.

FrameBuffer.rect(x, y, w, h, c)

FrameBuffer.fill_rect(x, y, w, h, c)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline
whereas the fill_rect method draws both the outline and interior.

Drawing text

FrameBuffer.text(s, x, y[, c ])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color
of the text can be defined by the optional argument but is otherwise a default value of 1. All characters
have dimensions of 8x8 pixels and there is currently no way to change the font.

Other methods

FrameBuffer.scroll(xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous
colors in the FrameBuffer.

FrameBuffer.blit(fbuf, x, y[, key ])
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then
it should be a color integer and the corresponding color will be considered transparent: all pixels with
that color value will not be drawn.

This method works between FrameBuffer instances utilising different formats, but the resulting colors
may be unexpected due to the mismatch in color formats.

Constants

framebuf.MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped
with bit 0 being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels.
Subsequent bytes appear at successive horizontal locations until the rightmost edge is reached. Further
bytes are rendered at locations starting at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally
mapped. Each byte occupies 8 horizontal pixels with bit 0 being the leftmost. Subsequent bytes appear
at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered on
the next row, one pixel lower.

framebuf.MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally
mapped. Each byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear
at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered on
the next row, one pixel lower.

framebuf.RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS2_HMSB
Grayscale (2-bit) color format

1.2. MicroPython-specific libraries 39



MicroPython Documentation, �� 1.11

framebuf.GS4_HMSB
Grayscale (4-bit) color format

framebuf.GS8
Grayscale (8-bit) color format

1.2.3 machine — functions related to the hardware

The machinemodule contains specific functions related to the hardware on a particular board. Most functions
in this module allow to achieve direct and unrestricted access to and control of hardware blocks on a system
(like CPU, timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your
board, and in extreme cases, hardware damage.

A note of callbacks used by functions and class methods of machine module: all these callbacks should be
considered as executing in an interrupt context. This is true for both physical devices with IDs >= 0 and
“virtual” devices with negative IDs like -1 (these “virtual” devices are still thin shims on top of real hardware
and real hardware interrupts). See Writing interrupt handlers.

Reset related functions

machine.reset()
Resets the device in a manner similar to pushing the external RESET button.

machine.reset_cause()
Get the reset cause. See constants for the possible return values.

Interrupt related functions

machine.disable_irq()
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque
value. This return value should be passed to the enable_irq() function to restore interrupts to their
original state, before disable_irq() was called.

machine.enable_irq(state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the
most recent call to the disable_irq() function.

Power related functions

machine.freq()
Returns CPU frequency in hertz.

machine.idle()
Gates the clock to the CPU, useful to reduce power consumption at any time during short or long
periods. Peripherals continue working and execution resumes as soon as any interrupt is triggered
(on many ports this includes system timer interrupt occurring at regular intervals on the order of
millisecond).

machine.sleep()

��: This function is deprecated, use lightsleep() instead with no arguments.
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machine.lightsleep([time_ms ])
machine.deepsleep([time_ms ])

Stops execution in an attempt to enter a low power state.

If time_ms is specified then this will be the maximum time in milliseconds that the sleep will last for.
Otherwise the sleep can last indefinitely.

With or without a timout, execution may resume at any time if there are events that require processing.
Such events, or wake sources, should be configured before sleeping, like Pin change or RTC timeout.

The precise behaviour and power-saving capabilities of lightsleep and deepsleep is highly dependent on
the underlying hardware, but the general properties are:

• A lightsleep has full RAM and state retention. Upon wake execution is resumed from the point
where the sleep was requested, with all subsystems operational.

• A deepsleep may not retain RAM or any other state of the system (for example peripherals or
network interfaces). Upon wake execution is resumed from the main script, similar to a hard or
power-on reset. The reset_cause() function will return machine.DEEPSLEEP and this can be
used to distinguish a deepsleep wake from other resets.

machine.wake_reason()
Get the wake reason. See constants for the possible return values.

Availability: ESP32, WiPy.

Miscellaneous functions

machine.unique_id()
Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance
to another, if underlying hardware allows. Length varies by hardware (so use substring of a full value
if you expect a short ID). In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us(pin, pulse_level, timeout_us=1000000)
Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level
argument should be 0 to time a low pulse or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin
input becomes equal to pulse_level, then (**) times the duration that the pin is equal to pulse_level.
If the pin is already equal to pulse_level then timing starts straight away.

The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there
was timeout during the main measurement, marked (**) above. The timeout is the same for both cases
and given by timeout_us (which is in microseconds).

machine.rng()
Return a 24-bit software generated random number.

Availability: WiPy.

Constants

machine.IDLE
machine.SLEEP
machine.DEEPSLEEP

IRQ wake values.

machine.PWRON_RESET
machine.HARD_RESET
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machine.WDT_RESET
machine.DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.

machine.WLAN_WAKE
machine.PIN_WAKE
machine.RTC_WAKE

Wake-up reasons.

Classes

class Pin – control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects
are commonly associated with a physical pin that can drive an output voltage and read input voltages. The
pin class has methods to set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic
level. For analog control of a pin, see the ADC class.

A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The
allowed forms of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities
for the identifier are an integer, a string or a tuple with port and pin number.

Usage Model:

from machine import Pin

# create an output pin on pin #0
p0 = Pin(0, Pin.OUT)

# set the value low then high
p0.value(0)
p0.value(1)

# create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)

# read and print the pin value
print(p2.value())

# reconfigure pin #0 in input mode
p0.mode(p0.IN)

# configure an irq callback
p0.irq(lambda p:print(p))

Constructors

class machine.Pin(id, mode=-1, pull=-1, *, value, drive, alt)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given
in the constructor then they are used to initialise the pin. Any settings that are not specified will
remain in their previous state.

The arguments are:
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• id is mandatory and can be an arbitrary object. Among possible value types are: int (an internal
Pin identifier), str (a Pin name), and tuple (pair of [port, pin]).

• mode specifies the pin mode, which can be one of:

– Pin.IN - Pin is configured for input. If viewed as an output the pin is in high-impedance
state.

– Pin.OUT - Pin is configured for (normal) output.

– Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the
following way: if the output value is set to 0 the pin is active at a low level; if the output
value is 1 the pin is in a high-impedance state. Not all ports implement this mode, or some
might only on certain pins.

– Pin.ALT - Pin is configured to perform an alternative function, which is port specific. For a
pin configured in such a way any other Pin methods (except Pin.init()) are not applicable
(calling them will lead to undefined, or a hardware-specific, result). Not all ports implement
this mode.

– Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not
all ports implement this mode.

• pull specifies if the pin has a (weak) pull resistor attached, and can be one of:

– None - No pull up or down resistor.

– Pin.PULL_UP - Pull up resistor enabled.

– Pin.PULL_DOWN - Pull down resistor enabled.

• value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin
value if given, otherwise the state of the pin peripheral remains unchanged.

• drive specifies the output power of the pin and can be one of: Pin.LOW_POWER, Pin.MED_POWER
or Pin.HIGH_POWER. The actual current driving capabilities are port dependent. Not all ports
implement this argument.

• alt specifies an alternate function for the pin and the values it can take are port dependent. This
argument is valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN modes. It may be used when a pin
supports more than one alternate function. If only one pin alternate function is supported the
this argument is not required. Not all ports implement this argument.

As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not
specify any further operations on such a pin. Pins configured in alternate-function mode are usually
not used as GPIO but are instead driven by other hardware peripherals. The only operation supported
on such a pin is re-initialising, by calling the constructor or Pin.init() method. If a pin that is
configured in alternate-function mode is re-initialised with Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the
alternate function will be removed from the pin.

Methods

Pin.init(mode=-1, pull=-1, *, value, drive, alt)
Re-initialise the pin using the given parameters. Only those arguments that are specified will be set.
The rest of the pin peripheral state will remain unchanged. See the constructor documentation for
details of the arguments.

Returns None.
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Pin.value([x ])
This method allows to set and get the value of the pin, depending on whether the argument x is
supplied or not.

If the argument is omitted then this method gets the digital logic level of the pin, returning 0 or 1
corresponding to low and high voltage signals respectively. The behaviour of this method depends on
the mode of the pin:

• Pin.IN - The method returns the actual input value currently present on the pin.

• Pin.OUT - The behaviour and return value of the method is undefined.

• Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and return value of the method is
undefined. Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently
present on the pin.

If the argument is supplied then this method sets the digital logic level of the pin. The argument x
can be anything that converts to a boolean. If it converts to True, the pin is set to state ‘1’, otherwise
it is set to state ‘0’. The behaviour of this method depends on the mode of the pin:

• Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it
remains in the high-impedance state. The stored value will become active on the pin as soon as
it is changed to Pin.OUT or Pin.OPEN_DRAIN mode.

• Pin.OUT - The output buffer is set to the given value immediately.

• Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set
to high-impedance state.

When setting the value this method returns None.

Pin.__call__([x ])
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin.
It is equivalent to Pin.value([x]). See Pin.value() for more details.

Pin.on()
Set pin to “1” output level.

Pin.off()
Set pin to “0” output level.

Pin.mode([mode ])
Get or set the pin mode. See the constructor documentation for details of the mode argument.

Pin.pull([pull ])
Get or set the pin pull state. See the constructor documentation for details of the pull argument.

Pin.drive([drive ])
Get or set the pin drive strength. See the constructor documentation for details of the drive argument.

Not all ports implement this method.

Availability: WiPy.

Pin.irq(handler=None, trigger=(Pin.IRQ_FALLING | Pin.IRQ_RISING), *, priority=1,
wake=None, hard=False)

Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin
mode is Pin.IN then the trigger source is the external value on the pin. If the pin mode is Pin.OUT
then the trigger source is the output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN
then the trigger source is the output buffer for state ‘0’ and the external pin value for state ‘1’.

The arguments are:
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• handler is an optional function to be called when the interrupt triggers. The handler must take
exactly one argument which is the Pin instance.

• trigger configures the event which can generate an interrupt. Possible values are:

– Pin.IRQ_FALLING interrupt on falling edge.

– Pin.IRQ_RISING interrupt on rising edge.

– Pin.IRQ_LOW_LEVEL interrupt on low level.

– Pin.IRQ_HIGH_LEVEL interrupt on high level.

These values can be OR’ed together to trigger on multiple events.

• priority sets the priority level of the interrupt. The values it can take are port-specific, but
higher values always represent higher priorities.

• wake selects the power mode in which this interrupt can wake up the system. It can be machine.
IDLE, machine.SLEEP or machine.DEEPSLEEP. These values can also be OR’ed together to make
a pin generate interrupts in more than one power mode.

• hard if true a hardware interrupt is used. This reduces the delay between the pin change and the
handler being called. Hard interrupt handlers may not allocate memory; see Writing interrupt
handlers.

This method returns a callback object.

Constants

The following constants are used to configure the pin objects. Note that not all constants are available on
all ports.

Pin.IN
Pin.OUT
Pin.OPEN_DRAIN
Pin.ALT
Pin.ALT_OPEN_DRAIN

Selects the pin mode.

Pin.PULL_UP
Pin.PULL_DOWN
Pin.PULL_HOLD

Selects whether there is a pull up/down resistor. Use the value None for no pull.

Pin.LOW_POWER
Pin.MED_POWER
Pin.HIGH_POWER

Selects the pin drive strength.

Pin.IRQ_FALLING
Pin.IRQ_RISING
Pin.IRQ_LOW_LEVEL
Pin.IRQ_HIGH_LEVEL

Selects the IRQ trigger type.
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class Signal – control and sense external I/O devices

The Signal class is a simple extension of the Pin class. Unlike Pin, which can be only in “absolute” 0 and
1 states, a Signal can be in “asserted” (on) or “deasserted” (off) states, while being inverted (active-low) or
not. In other words, it adds logical inversion support to Pin functionality. While this may seem a simple
addition, it is exactly what is needed to support wide array of simple digital devices in a way portable across
different boards, which is one of the major MicroPython goals. Regardless of whether different users have an
active-high or active-low LED, a normally open or normally closed relay - you can develop a single, nicely
looking application which works with each of them, and capture hardware configuration differences in few
lines in the config file of your app.

Example:

from machine import Pin, Signal

# Suppose you have an active-high LED on pin 0
led1_pin = Pin(0, Pin.OUT)
# ... and active-low LED on pin 1
led2_pin = Pin(1, Pin.OUT)

# Now to light up both of them using Pin class, you'll need to set
# them to different values
led1_pin.value(1)
led2_pin.value(0)

# Signal class allows to abstract away active-high/active-low
# difference
led1 = Signal(led1_pin, invert=False)
led2 = Signal(led2_pin, invert=True)

# Now lighting up them looks the same
led1.value(1)
led2.value(1)

# Even better:
led1.on()
led2.on()

Following is the guide when Signal vs Pin should be used:

• Use Signal: If you want to control a simple on/off (including software PWM!) devices like LEDs, multi-
segment indicators, relays, buzzers, or read simple binary sensors, like normally open or normally closed
buttons, pulled high or low, Reed switches, moisture/flame detectors, etc. etc. Summing up, if you
have a real physical device/sensor requiring GPIO access, you likely should use a Signal.

• Use Pin: If you implement a higher-level protocol or bus to communicate with more complex devices.

The split between Pin and Signal come from the usecases above and the architecture of MicroPython: Pin
offers the lowest overhead, which may be important when bit-banging protocols. But Signal adds additional
flexibility on top of Pin, at the cost of minor overhead (much smaller than if you implemented active-high
vs active-low device differences in Python manually!). Also, Pin is a low-level object which needs to be
implemented for each support board, while Signal is a high-level object which comes for free once Pin is
implemented.

If in doubt, give the Signal a try! Once again, it is offered to save developers from the need to handle
unexciting differences like active-low vs active-high signals, and allow other users to share and enjoy your
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application, instead of being frustrated by the fact that it doesn’t work for them simply because their LEDs
or relays are wired in a slightly different way.

Constructors

class machine.Signal(pin_obj, invert=False)
class machine.Signal(pin_arguments..., *, invert=False)

Create a Signal object. There’re two ways to create it:

• By wrapping existing Pin object - universal method which works for any board.

• By passing required Pin parameters directly to Signal constructor, skipping the need to create
intermediate Pin object. Available on many, but not all boards.

The arguments are:

• pin_obj is existing Pin object.

• pin_arguments are the same arguments as can be passed to Pin constructor.

• invert - if True, the signal will be inverted (active low).

Methods

Signal.value([x ])
This method allows to set and get the value of the signal, depending on whether the argument x is
supplied or not.

If the argument is omitted then this method gets the signal level, 1 meaning signal is asserted (active)
and 0 - signal inactive.

If the argument is supplied then this method sets the signal level. The argument x can be anything
that converts to a boolean. If it converts to True, the signal is active, otherwise it is inactive.

Correspondence between signal being active and actual logic level on the underlying pin depends on
whether signal is inverted (active-low) or not. For non-inverted signal, active status corresponds to
logical 1, inactive - to logical 0. For inverted/active-low signal, active status corresponds to logical 0,
while inactive - to logical 1.

Signal.on()
Activate signal.

Signal.off()
Deactivate signal.

class ADC – analog to digital conversion

Usage:

import machine

adc = machine.ADC() # create an ADC object
apin = adc.channel(pin='GP3') # create an analog pin on GP3
val = apin() # read an analog value

1.2. MicroPython-specific libraries 47



MicroPython Documentation, �� 1.11

Constructors

class machine.ADC(id=0, *, bits=12)
Create an ADC object associated with the given pin. This allows you to then read analog values on
that pin. For more info check the pinout and alternate functions table.

��: ADC pin input range is 0-1.4V (being 1.8V the absolute maximum that it can withstand).
When GP2, GP3, GP4 or GP5 are remapped to the ADC block, 1.8 V is the maximum. If these
pins are used in digital mode, then the maximum allowed input is 3.6V.

Methods

ADC.channel(id, *, pin)
Create an analog pin. If only channel ID is given, the correct pin will be selected. Alternatively, only
the pin can be passed and the correct channel will be selected. Examples:

# all of these are equivalent and enable ADC channel 1 on GP3
apin = adc.channel(1)
apin = adc.channel(pin='GP3')
apin = adc.channel(id=1, pin='GP3')

ADC.init()
Enable the ADC block.

ADC.deinit()
Disable the ADC block.

class ADCChannel — read analog values from internal or external sources

ADC channels can be connected to internal points of the MCU or to GPIO pins. ADC channels are created
using the ADC.channel method.

machine.adcchannel()
Fast method to read the channel value.

adcchannel.value()
Read the channel value.

adcchannel.init()
Re-init (and effectively enable) the ADC channel.

adcchannel.deinit()
Disable the ADC channel.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical
level it consists of 2 lines: RX and TX. The unit of communication is a character (not to be confused with
a string character) which can be 8 or 9 bits wide.

UART objects can be created and initialised using:
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from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on a board:

Pyboard: Bits can be 7, 8 or 9. Stop can be 1 or 2. With parity=None, only 8 and 9 bits are supported.
With parity enabled, only 7 and 8 bits are supported.

WiPy/CC3200: Bits can be 5, 6, 7, 8. Stop can be 1 or 2.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Constructors

class machine.UART(id, ...)
Construct a UART object of the given id.

Methods

UART.init(baudrate=9600, bits=8, parity=None, stop=1, *, ...)
Initialise the UART bus with the given parameters:

• baudrate is the clock rate.

• bits is the number of bits per character, 7, 8 or 9.

• parity is the parity, None, 0 (even) or 1 (odd).

• stop is the number of stop bits, 1 or 2.

Additional keyword-only parameters that may be supported by a port are:

• tx specifies the TX pin to use.

• rx specifies the RX pin to use.

• txbuf specifies the length in characters of the TX buffer.

• rxbuf specifies the length in characters of the RX buffer.

On the WiPy only the following keyword-only parameter is supported:

• pins is a 4 or 2 item list indicating the TX, RX, RTS and CTS pins (in that order). Any of the
pins can be None if one wants the UART to operate with limited functionality. If the RTS pin is
given the the RX pin must be given as well. The same applies to CTS. When no pins are given,
then the default set of TX and RX pins is taken, and hardware flow control will be disabled. If
pins is None, no pin assignment will be made.

UART.deinit()
Turn off the UART bus.
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UART.any()
Returns an integer counting the number of characters that can be read without blocking. It will return
0 if there are no characters available and a positive number if there are characters. The method may
return 1 even if there is more than one character available for reading.

For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

UART.read([nbytes ])
Read characters. If nbytes is specified then read at most that many bytes, otherwise read as much
data as possible.

Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readinto(buf [, nbytes ])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read
at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character.

Return value: the line read or None on timeout.

UART.write(buf)
Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration longer than required for a
normal transmission of a character.

UART.irq(trigger, priority=1, handler=None, wake=machine.IDLE)
Create a callback to be triggered when data is received on the UART.

• trigger can only be UART.RX_ANY

• priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher
priorities.

• handler an optional function to be called when new characters arrive.

• wake can only be machine.IDLE.

��: The handler will be called whenever any of the following two conditions are met:

• 8 new characters have been received.

• At least 1 new character is waiting in the Rx buffer and the Rx line has been silent for the duration
of 1 complete frame.

This means that when the handler function is called there will be between 1 to 8 characters waiting.

Returns an irq object.

Availability: WiPy.
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Constants

UART.RX_ANY
IRQ trigger sources

Availability: WiPy.

class SPI – a Serial Peripheral Interface bus protocol (master side)

SPI is a synchronous serial protocol that is driven by a master. At the physical level, a bus consists of 3
lines: SCK, MOSI, MISO. Multiple devices can share the same bus. Each device should have a separate,
4th signal, SS (Slave Select), to select a particular device on a bus with which communication takes place.
Management of an SS signal should happen in user code (via machine.Pin class).

Constructors

class machine.SPI(id, ...)
Construct an SPI object on the given bus, id. Values of id depend on a particular port and its
hardware. Values 0, 1, etc. are commonly used to select hardware SPI block #0, #1, etc. Value -1
can be used for bitbanging (software) implementation of SPI (if supported by a port).

With no additional parameters, the SPI object is created but not initialised (it has the settings from
the last initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init
for parameters of initialisation.

Methods

SPI.init(baudrate=1000000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None,
mosi=None, miso=None, pins=(SCK, MOSI, MISO))

Initialise the SPI bus with the given parameters:

• baudrate is the SCK clock rate.

• polarity can be 0 or 1, and is the level the idle clock line sits at.

• phase can be 0 or 1 to sample data on the first or second clock edge respectively.

• bits is the width in bits of each transfer. Only 8 is guaranteed to be supported by all hardware.

• firstbit can be SPI.MSB or SPI.LSB.

• sck, mosi, miso are pins (machine.Pin) objects to use for bus signals. For most hardware SPI
blocks (as selected by id parameter to the constructor), pins are fixed and cannot be changed. In
some cases, hardware blocks allow 2-3 alternative pin sets for a hardware SPI block. Arbitrary
pin assignments are possible only for a bitbanging SPI driver (id = -1).

• pins - WiPy port doesn’t sck, mosi, miso arguments, and instead allows to specify them as a
tuple of pins parameter.

In the case of hardware SPI the actual clock frequency may be lower than the requested baudrate.
This is dependant on the platform hardware. The actual rate may be determined by printing the SPI
object.

SPI.deinit()
Turn off the SPI bus.

1.2. MicroPython-specific libraries 51



MicroPython Documentation, �� 1.11

SPI.read(nbytes, write=0x00)
Read a number of bytes specified by nbytes while continuously writing the single byte given by write.
Returns a bytes object with the data that was read.

SPI.readinto(buf, write=0x00)
Read into the buffer specified by buf while continuously writing the single byte given by write. Returns
None.

Note: on WiPy this function returns the number of bytes read.

SPI.write(buf)
Write the bytes contained in buf. Returns None.

Note: on WiPy this function returns the number of bytes written.

SPI.write_readinto(write_buf, read_buf)
Write the bytes from write_buf while reading into read_buf. The buffers can be the same or different,
but both buffers must have the same length. Returns None.

Note: on WiPy this function returns the number of bytes written.

Constants

SPI.MASTER
for initialising the SPI bus to master; this is only used for the WiPy

SPI.MSB
set the first bit to be the most significant bit

SPI.LSB
set the first bit to be the least significant bit

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires:
SCL and SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later
on.

Printing the I2C object gives you information about its configuration.

Example usage:

from machine import I2C

i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
# depending on the port, extra parameters may be required
# to select the peripheral and/or pins to use

i2c.scan() # scan for slaves, returning a list of 7-bit addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
# starting at memory-address 8 in the slave

(����)
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i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42
# starting at address 2 in the slave

Constructors

class machine.I2C(id=-1, *, scl, sda, freq=400000)
Construct and return a new I2C object using the following parameters:

• id identifies a particular I2C peripheral. The default value of -1 selects a software implementation
of I2C which can work (in most cases) with arbitrary pins for SCL and SDA. If id is -1 then scl
and sda must be specified. Other allowed values for id depend on the particular port/board, and
specifying scl and sda may or may not be required or allowed in this case.

• scl should be a pin object specifying the pin to use for SCL.

• sda should be a pin object specifying the pin to use for SDA.

• freq should be an integer which sets the maximum frequency for SCL.

General Methods

I2C.init(scl, sda, *, freq=400000)
Initialise the I2C bus with the given arguments:

• scl is a pin object for the SCL line

• sda is a pin object for the SDA line

• freq is the SCL clock rate

I2C.deinit()
Turn off the I2C bus.

Availability: WiPy.

I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A
device responds if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

Primitive I2C operations

The following methods implement the primitive I2C master bus operations and can be combined to make any
I2C transaction. They are provided if you need more control over the bus, otherwise the standard methods
(see below) can be used.

These methods are available on software I2C only.

I2C.start()
Generate a START condition on the bus (SDA transitions to low while SCL is high).

I2C.stop()
Generate a STOP condition on the bus (SDA transitions to high while SCL is high).

I2C.readinto(buf, nack=True)
Reads bytes from the bus and stores them into buf. The number of bytes read is the length of buf. An
ACK will be sent on the bus after receiving all but the last byte. After the last byte is received, if nack
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is true then a NACK will be sent, otherwise an ACK will be sent (and in this case the slave assumes
more bytes are going to be read in a later call).

I2C.write(buf)
Write the bytes from buf to the bus. Checks that an ACK is received after each byte and stops
transmitting the remaining bytes if a NACK is received. The function returns the number of ACKs
that were received.

Standard bus operations

The following methods implement the standard I2C master read and write operations that target a given
slave device.

I2C.readfrom(addr, nbytes, stop=True)
Read nbytes from the slave specified by addr. If stop is true then a STOP condition is generated at
the end of the transfer. Returns a bytes object with the data read.

I2C.readfrom_into(addr, buf, stop=True)
Read into buf from the slave specified by addr. The number of bytes read will be the length of buf. If
stop is true then a STOP condition is generated at the end of the transfer.

The method returns None.

I2C.writeto(addr, buf, stop=True)
Write the bytes from buf to the slave specified by addr. If a NACK is received following the write
of a byte from buf then the remaining bytes are not sent. If stop is true then a STOP condition is
generated at the end of the transfer, even if a NACK is received. The function returns the number of
ACKs that were received.

I2C.writevto(addr, vector, stop=True)
Write the bytes contained in vector to the slave specified by addr. vector should be a tuple or list of
objects with the buffer protocol. The addr is sent once and then the bytes from each object in vector
are written out sequentially. The objects in vector may be zero bytes in length in which case they
don’t contribute to the output.

If a NACK is received following the write of a byte from one of the objects in vector then the remaining
bytes, and any remaining objects, are not sent. If stop is true then a STOP condition is generated at
the end of the transfer, even if a NACK is received. The function returns the number of ACKs that
were received.

Memory operations

Some I2C devices act as a memory device (or set of registers) that can be read from and written to. In this
case there are two addresses associated with an I2C transaction: the slave address and the memory address.
The following methods are convenience functions to communicate with such devices.

I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the slave specified by addr starting from the memory address specified by memaddr.
The argument addrsize specifies the address size in bits. Returns a bytes object with the data read.

I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the slave specified by addr starting from the memory address specified by memaddr.
The number of bytes read is the length of buf. The argument addrsize specifies the address size in bits
(on ESP8266 this argument is not recognised and the address size is always 8 bits).

The method returns None.
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I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the slave specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits (on ESP8266 this argument is not recognised and
the address size is always 8 bits).

The method returns None.

class RTC – real time clock

The RTC is and independent clock that keeps track of the date and time.

Example usage:

rtc = machine.RTC()
rtc.init((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.now())

Constructors

class machine.RTC(id=0, ...)
Create an RTC object. See init for parameters of initialization.

Methods

RTC.init(datetime)
Initialise the RTC. Datetime is a tuple of the form:

(year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])

RTC.now()
Get get the current datetime tuple.

RTC.deinit()
Resets the RTC to the time of January 1, 2015 and starts running it again.

RTC.alarm(id, time, *, repeat=False)
Set the RTC alarm. Time might be either a millisecond value to program the alarm to current time +
time_in_ms in the future, or a datetimetuple. If the time passed is in milliseconds, repeat can be set
to True to make the alarm periodic.

RTC.alarm_left(alarm_id=0)
Get the number of milliseconds left before the alarm expires.

RTC.cancel(alarm_id=0)
Cancel a running alarm.

RTC.irq(*, trigger, handler=None, wake=machine.IDLE)
Create an irq object triggered by a real time clock alarm.

• trigger must be RTC.ALARM0

• handler is the function to be called when the callback is triggered.

• wake specifies the sleep mode from where this interrupt can wake up the system.
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Constants

RTC.ALARM0
irq trigger source

class Timer – control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and hetero-
geneous kind of hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s
Timer class defines a baseline operation of executing a callback with a given period (or once after some
delay), and allow specific boards to define more non-standard behavior (which thus won’t be portable to
other boards).

See discussion of important constraints on Timer callbacks.

��: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler
don’t give much information. See micropython.alloc_emergency_exception_buf() for how to get around
this limitation.

If you are using a WiPy board please refer to machine.TimerWiPy instead of this class.

Constructors

class machine.Timer(id, ...)
Construct a new timer object of the given id. Id of -1 constructs a virtual timer (if supported by a
board).

Methods

Timer.init(*, mode=Timer.PERIODIC, period=-1, callback=None)
Initialise the timer. Example:

tim.init(period=100) # periodic with 100ms period
tim.init(mode=Timer.ONE_SHOT, period=1000) # one shot firing after 1000ms

Keyword arguments:

• mode can be one of:

– Timer.ONE_SHOT - The timer runs once until the configured period of the channel expires.

– Timer.PERIODIC - The timer runs periodically at the configured frequency of the channel.

Timer.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

Constants

Timer.ONE_SHOT
Timer.PERIODIC

Timer operating mode.
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class WDT – watchdog timer

The WDT is used to restart the system when the application crashes and ends up into a non recoverable
state. Once started it cannot be stopped or reconfigured in any way. After enabling, the application must
“feed” the watchdog periodically to prevent it from expiring and resetting the system.

Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt.feed()

Availability of this class: pyboard, WiPy.

Constructors

class machine.WDT(id=0, timeout=5000)
Create a WDT object and start it. The timeout must be given in seconds and the minimum value that
is accepted is 1 second. Once it is running the timeout cannot be changed and the WDT cannot be
stopped either.

Methods

wdt.feed()
Feed the WDT to prevent it from resetting the system. The application should place this call in a
sensible place ensuring that the WDT is only fed after verifying that everything is functioning correctly.

class SD – secure digital memory card (cc3200 port only)

��: This is a non-standard class and is only available on the cc3200 port.

The SD card class allows to configure and enable the memory card module of the WiPy and automatically
mount it as /sd as part of the file system. There are several pin combinations that can be used to wire the
SD card socket to the WiPy and the pins used can be specified in the constructor. Please check the pinout
and alternate functions table. for more info regarding the pins which can be remapped to be used with a
SD card.

Example usage:

from machine import SD
import os
# clk cmd and dat0 pins must be passed along with
# their respective alternate functions
sd = machine.SD(pins=('GP10', 'GP11', 'GP15'))
os.mount(sd, '/sd')
# do normal file operations
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Constructors

class machine.SD(id, ...)
Create a SD card object. See init() for parameters if initialization.

Methods

SD.init(id=0, pins=(’GP10’, ’GP11’, ’GP15’))
Enable the SD card. In order to initialize the card, give it a 3-tuple: (clk_pin, cmd_pin, dat0_pin).

SD.deinit()
Disable the SD card.

class SDCard – secure digital memory card

SD cards are one of the most common small form factor removable storage media. SD cards come in a
variety of sizes and phsyical form factors. MMC cards are similar removable storage devices while eMMC
devices are electically similar storage devices designed to be embedded into other systems. All three form
share a common protocol for communication with their host system and high-level support looks the same
for them all. As such in MicroPython they are implemented in a single class called machine.SDCard .

Both SD and MMC interfaces support being accessed with a variety of bus widths. When being accessed with
a 1-bit wide interface they can be accessed using the SPI protocol. Different MicroPython hardware platforms
support different widths and pin configurations but for most platforms there is a standard configuation for
any given hardware. In general constructing an SDCard` object with without passing any parameters will
initialise the interface to the default card slot for the current hardware. The arguments listed below represent
the common arguments that might need to be set in order to use either a non-stanard slot or a non-standard
pin assignment. The exact subset of arguments suported will vary from platform to platform.

class machine.SDCard(slot=1, width=1, cd=None, wp=None, sck=None, miso=None, mosi=None,
cs=None)

This class provides access to SD or MMC storage cards using either a dedicated SD/MMC inter-
face hardware or through an SPI channel. The class implements the block protocol defined by uos.
AbstractBlockDev. This allows the mounting of an SD card to be as simple as:

uos.mount(machine.SDCard(), "/sd")

The constrcutor takes the following paramters:

• slot selects which of the available interfaces to use. Leaving this unset will select the default
interface.

• width selects the bus width for the SD/MMC interface.

• cd can be used to specify a card-detect pin.

• wp can be used to specify a write-protect pin.

• sck can be used to specify an SPI clock pin.

• miso can be used to specify an SPI miso pin.

• mosi can be used to specify an SPI mosi pin.

• cs can be used to specify an SPI chip select pin.
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Implementation-specific details

Different implementations of the SDCard class on different hardware support varying subsets of the options
above.

PyBoard

The standard PyBoard has just one slot. No arguments are necessary or supported.

ESP32

The ESP32 provides two channels of SD/MMC hardware and also supports access to SD Cards through
either of the two SPI ports that are generally available to the user. As a result the slot argument can take a
value between 0 and 3, inclusive. Slots 0 and 1 use the built-in SD/MMC hardware while slots 2 and 3 use
the SPI ports. Slot 0 supports 1, 4 or 8-bit wide access while slot 1 supports 1 or 4-bit access; the SPI slots
only support 1-bit access.

��: Slot 0 is used to communicate with on-board flash memory on most ESP32 modules and so
will be unavailable to the user.

��: Most ESP32 modules that provide an SD card slot using the dedicated hardware only wire
up 1 data pin, so the default value for width is 1.

The pins used by the dedicated SD/MMC hardware are fixed. The pins used by the SPI hardware can be
reassigned.

��: If any of the SPI signals are remapped then all of the SPI signals will pass through a GPIO
multiplexer unit which can limit the performance of high frequency signals. Since the normal
operating speed for SD cards is 40MHz this can cause problems on some cards.

The default (and preferred) pin assignment are as follows:

Slot 0 1 2 3
Signal Pin Pin Pin Pin
sck 6 14 18 14
cmd 11 15
cs 5 15
miso 19 12
mosi 23 13
D0 7 2
D1 8 4
D2 9 12
D3 10 13
D4 16
D5 17
D6 5
D7 18
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cc3200

You can set the pins used for SPI access by passing a tuple as the pins argument.

Note: The current cc3200 SD card implementation names the this class machine.SD rather than machine.
SDCard .

1.2.4 micropython – access and control MicroPython internals

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this
function should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are
declared in. On the other hand, if a constant begins with an underscore then it is hidden, it is not
available as a global variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of
the micropython module mainly so that scripts can be written which run under both CPython and
MicroPython, by following the above pattern.

micropython.opt_level([level ])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and
returns None. Otherwise it returns the current optimisation level.

The optimisation level controls the following compilation features:

• Assertions: at level 0 assertion statements are enabled and compiled into the bytecode; at levels
1 and higher assertions are not compiled.

• Built-in __debug__ variable: at level 0 this variable expands to True; at levels 1 and higher it
expands to False.

• Source-code line numbers: at levels 0, 1 and 2 source-code line number are stored along with the
bytecode so that exceptions can report the line number they occurred at; at levels 3 and higher
line numbers are not stored.

The default optimisation level is usually level 0.

micropython.alloc_emergency_exception_buf(size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The
buffer is used to create exceptions in cases when normal RAM allocation would fail (eg within an
interrupt handler) and therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py)
and then the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbose ])
Print information about currently used memory. If the verbose argument is given then extra information
is printed.
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The information that is printed is implementation dependent, but currently includes the amount of
stack and heap used. In verbose mode it prints out the entire heap indicating which blocks are used
and which are free.

micropython.qstr_info([verbose ])
Print information about currently interned strings. If the verbose argument is given then extra infor-
mation is printed.

The information that is printed is implementation dependent, but currently includes the number of
interned strings and the amount of RAM they use. In verbose mode it prints out the names of all
RAM-interned strings.

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of
this is not particularly useful, rather it should be used to compute differences in stack usage at different
points.

micropython.heap_lock()

micropython.heap_unlock()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be
raised if any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth
will increase, and then heap_unlock() must be called the same number of times to make the heap
available again.

If the REPL becomes active with the heap locked then it will be forcefully unlocked.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during
script execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C,
and passing 3 will restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters
that is usually used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its
single argument. “Very soon” means that the MicroPython runtime will do its best to execute the
function at the earliest possible time, given that it is also trying to be efficient, and that the following
conditions hold:

• A scheduled function will never preempt another scheduled function.

• Scheduled functions are always executed “between opcodes” which means that all fundamental
Python operations (such as appending to a list) are guaranteed to be atomic.

• A given port may define “critical regions” within which scheduled functions will never be executed.
Functions may be scheduled within a critical region but they will not be executed until that region
is exited. An example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions
on the code that runs in the IRQ (for example the heap may be locked) and scheduling a function to
call later will lift those restrictions.

Note: If schedule() is called from a preempting IRQ, when memory allocation is not allowed and the
callback to be passed to schedule() is a bound method, passing this directly will fail. This is because
creating a reference to a bound method causes memory allocation. A solution is to create a reference
to the method in the class constructor and to pass that reference to schedule(). This is discussed in
detail here reference documentation under “Creation of Python objects”.
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There is a finite stack to hold the scheduled functions and schedule() will raise a RuntimeError if
the stack is full.

1.2.5 network — network configuration

This module provides network drivers and routing configuration. To use this module, a MicroPython vari-
ant/build with network capabilities must be installed. Network drivers for specific hardware are available
within this module and are used to configure hardware network interface(s). Network services provided by
configured interfaces are then available for use via the usocket module.

For example:

# connect/ show IP config a specific network interface
# see below for examples of specific drivers
import network
import utime
nic = network.Driver(...)
if not nic.isconnected():

nic.connect()
print("Waiting for connection...")
while not nic.isconnected():

utime.sleep(1)
print(nic.ifconfig())

# now use usocket as usual
import usocket as socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()

Common network adapter interface

This section describes an (implied) abstract base class for all network interface classes implemented by
MicroPython ports for different hardware. This means that MicroPython does not actually provide
AbstractNIC class, but any actual NIC class, as described in the following sections, implements methods as
described here.

class network.AbstractNIC(id=None, ...)

Instantiate a network interface object. Parameters are network interface dependent. If there are more than
one interface of the same type, the first parameter should be id.

AbstractNIC.active([is_active ])
Activate (“up”) or deactivate (“down”) the network interface, if a boolean argument is passed. Other-
wise, query current state if no argument is provided. Most other methods require an active interface
(behavior of calling them on inactive interface is undefined).

AbstractNIC.connect([service_id, key=None, *, ... ])
Connect the interface to a network. This method is optional, and available only for interfaces which are
not “always connected”. If no parameters are given, connect to the default (or the only) service. If a
single parameter is given, it is the primary identifier of a service to connect to. It may be accompanied
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by a key (password) required to access said service. There can be further arbitrary keyword-only
parameters, depending on the networking medium type and/or particular device. Parameters can be
used to: a) specify alternative service identifer types; b) provide additional connection parameters. For
various medium types, there are different sets of predefined/recommended parameters, among them:

• WiFi: bssid keyword to connect to a specific BSSID (MAC address)

AbstractNIC.disconnect()
Disconnect from network.

AbstractNIC.isconnected()
Returns True if connected to network, otherwise returns False.

AbstractNIC.scan(*, ...)
Scan for the available network services/connections. Returns a list of tuples with discovered service
parameters. For various network media, there are different variants of predefined/ recommended tuple
formats, among them:

• WiFi: (ssid, bssid, channel, RSSI, authmode, hidden). There may be further fields, specific to a
particular device.

The function may accept additional keyword arguments to filter scan results (e.g. scan for a particular
service, on a particular channel, for services of a particular set, etc.), and to affect scan duration and
other parameters. Where possible, parameter names should match those in connect().

AbstractNIC.status([param ])
Query dynamic status information of the interface. When called with no argument the return value
describes the network link status. Otherwise param should be a string naming the particular status
parameter to retrieve.

The return types and values are dependent on the network medium/technology. Some of the parameters
that may be supported are:

• WiFi STA: use 'rssi' to retrieve the RSSI of the AP signal

• WiFi AP: use 'stations' to retrieve a list of all the STAs connected to the AP. The list contains
tuples of the form (MAC, RSSI).

AbstractNIC.ifconfig([(ip, subnet, gateway, dns) ])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server.
When called with no arguments, this method returns a 4-tuple with the above information. To set the
above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

AbstractNIC.config(’param’)
AbstractNIC.config(param=value, ...)

Get or set general network interface parameters. These methods allow to work with additional param-
eters beyond standard IP configuration (as dealt with by ifconfig()). These include network-specific
and hardware-specific parameters. For setting parameters, the keyword argument syntax should be
used, and multiple parameters can be set at once. For querying, a parameter name should be quoted
as a string, and only one parameter can be queried at a time:

# Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
# Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))
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Specific network class implementations

The following concrete classes implement the AbstractNIC interface and provide a way to control networking
interfaces of various kinds.

class WLAN – control built-in WiFi interfaces

This class provides a driver for WiFi network processors. Example usage:

import network
# enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)
nic.active(True)
nic.connect('your-ssid', 'your-password')
# now use sockets as usual

Constructors

class network.WLAN(interface_id)

Create a WLAN network interface object. Supported interfaces are network.STA_IF (station aka client,
connects to upstream WiFi access points) and network.AP_IF (access point, allows other WiFi clients to
connect). Availability of the methods below depends on interface type. For example, only STA interface
may WLAN.connect() to an access point.

Methods

WLAN.active([is_active ])
Activate (“up”) or deactivate (“down”) network interface, if boolean argument is passed. Otherwise,
query current state if no argument is provided. Most other methods require active interface.

WLAN.connect(ssid=None, password=None, *, bssid=None)
Connect to the specified wireless network, using the specified password. If bssid is given then the
connection will be restricted to the access-point with that MAC address (the ssid must also be specified
in this case).

WLAN.disconnect()
Disconnect from the currently connected wireless network.

WLAN.scan()
Scan for the available wireless networks.

Scanning is only possible on STA interface. Returns list of tuples with the information about WiFi
access points:

(ssid, bssid, channel, RSSI, authmode, hidden)

bssid is hardware address of an access point, in binary form, returned as bytes object. You can use
ubinascii.hexlify() to convert it to ASCII form.

There are five values for authmode:

• 0 – open

• 1 – WEP
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• 2 – WPA-PSK

• 3 – WPA2-PSK

• 4 – WPA/WPA2-PSK

and two for hidden:

• 0 – visible

• 1 – hidden

WLAN.status([param ])
Return the current status of the wireless connection.

When called with no argument the return value describes the network link status. The possible statuses
are defined as constants:

• STAT_IDLE – no connection and no activity,

• STAT_CONNECTING – connecting in progress,

• STAT_WRONG_PASSWORD – failed due to incorrect password,

• STAT_NO_AP_FOUND – failed because no access point replied,

• STAT_CONNECT_FAIL – failed due to other problems,

• STAT_GOT_IP – connection successful.

When called with one argument param should be a string naming the status parameter to retrieve.
Supported parameters in WiFI STA mode are: 'rssi'.

WLAN.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In
AP mode returns True when a station is connected. Returns False otherwise.

WLAN.ifconfig([(ip, subnet, gateway, dns) ])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server.
When called with no arguments, this method returns a 4-tuple with the above information. To set the
above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WLAN.config(’param’)

WLAN.config(param=value, ...)
Get or set general network interface parameters. These methods allow to work with additional param-
eters beyond standard IP configuration (as dealt with by WLAN.ifconfig()). These include network-
specific and hardware-specific parameters. For setting parameters, keyword argument syntax should
be used, multiple parameters can be set at once. For querying, parameters name should be quoted as
a string, and only one parameter can be queries at time:

# Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
# Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))

Following are commonly supported parameters (availability of a specific parameter depends on network
technology type, driver, and MicroPython port).
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Parameter Description
mac MAC address (bytes)
essid WiFi access point name (string)
channel WiFi channel (integer)
hidden Whether ESSID is hidden (boolean)
authmode Authentication mode supported (enumeration, see module constants)
password Access password (string)
dhcp_hostname The DHCP hostname to use

class WLANWiPy – WiPy specific WiFi control

��: This class is a non-standard WLAN implementation for the WiPy. It is available simply as network.
WLAN on the WiPy but is named in the documentation below as network.WLANWiPy to distinguish it from
the more general network.WLAN class.

This class provides a driver for the WiFi network processor in the WiPy. Example usage:

import network
import time
# setup as a station
wlan = network.WLAN(mode=WLAN.STA)
wlan.connect('your-ssid', auth=(WLAN.WPA2, 'your-key'))
while not wlan.isconnected():

time.sleep_ms(50)
print(wlan.ifconfig())

# now use socket as usual
...

Constructors

class network.WLANWiPy(id=0, ...)
Create a WLAN object, and optionally configure it. See init() for params of configuration.

��: The WLAN constructor is special in the sense that if no arguments besides the id are given, it will return
the already existing WLAN instance without re-configuring it. This is because WLAN is a system feature of the
WiPy. If the already existing instance is not initialized it will do the same as the other constructors an will
initialize it with default values.

Methods

WLANWiPy.init(mode, *, ssid, auth, channel, antenna)
Set or get the WiFi network processor configuration.

Arguments are:

• mode can be either WLAN.STA or WLAN.AP.
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• ssid is a string with the ssid name. Only needed when mode is WLAN.AP.

• auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The key
is a string with the network password. If sec is WLAN.WEP the key must be a string representing
hexadecimal values (e.g. ‘ABC1DE45BF’). Only needed when mode is WLAN.AP.

• channel a number in the range 1-11. Only needed when mode is WLAN.AP.

• antenna selects between the internal and the external antenna. Can be either WLAN.INT_ANT or
WLAN.EXT_ANT.

For example, you can do:

# create and configure as an access point
wlan.init(mode=WLAN.AP, ssid='wipy-wlan', auth=(WLAN.WPA2,'www.wipy.io'), channel=7,
↪→ antenna=WLAN.INT_ANT)

or:

# configure as an station
wlan.init(mode=WLAN.STA)

WLANWiPy.connect(ssid, *, auth=None, bssid=None, timeout=None)
Connect to a WiFi access point using the given SSID, and other security parameters.

• auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The key
is a string with the network password. If sec is WLAN.WEP the key must be a string representing
hexadecimal values (e.g. ‘ABC1DE45BF’).

• bssid is the MAC address of the AP to connect to. Useful when there are several APs with the
same ssid.

• timeout is the maximum time in milliseconds to wait for the connection to succeed.

WLANWiPy.scan()
Performs a network scan and returns a list of named tuples with (ssid, bssid, sec, channel, rssi). Note
that channel is always None since this info is not provided by the WiPy.

WLANWiPy.disconnect()
Disconnect from the WiFi access point.

WLANWiPy.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In
AP mode returns True when a station is connected, False otherwise.

WLANWiPy.ifconfig(if_id=0, config=[’dhcp’ or configtuple])
With no parameters given returns a 4-tuple of (ip, subnet_mask, gateway, DNS_server).

if 'dhcp' is passed as a parameter then the DHCP client is enabled and the IP params are negotiated
with the AP.

If the 4-tuple config is given then a static IP is configured. For instance:

wlan.ifconfig(config=('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WLANWiPy.mode([mode ])
Get or set the WLAN mode.

WLANWiPy.ssid([ssid ])
Get or set the SSID when in AP mode.
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WLANWiPy.auth([auth ])
Get or set the authentication type when in AP mode.

WLANWiPy.channel([channel ])
Get or set the channel (only applicable in AP mode).

WLANWiPy.antenna([antenna ])
Get or set the antenna type (external or internal).

WLANWiPy.mac([mac_addr ])
Get or set a 6-byte long bytes object with the MAC address.

WLANWiPy.irq(*, handler, wake)
Create a callback to be triggered when a WLAN event occurs during machine.SLEEP mode. Events
are triggered by socket activity or by WLAN connection/disconnection.

• handler is the function that gets called when the IRQ is triggered.

• wake must be machine.SLEEP.

Returns an IRQ object.

Constants

WLANWiPy.STA

WLANWiPy.AP
selects the WLAN mode

WLANWiPy.WEP

WLANWiPy.WPA

WLANWiPy.WPA2
selects the network security

WLANWiPy.INT_ANT

WLANWiPy.EXT_ANT
selects the antenna type

class CC3K – control CC3000 WiFi modules

This class provides a driver for CC3000 WiFi modules. Example usage:

import network
nic = network.CC3K(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)
nic.connect('your-ssid', 'your-password')
while not nic.isconnected():

pyb.delay(50)
print(nic.ifconfig())

# now use socket as usual
...

For this example to work the CC3000 module must have the following connections:

• MOSI connected to Y8
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• MISO connected to Y7

• CLK connected to Y6

• CS connected to Y5

• VBEN connected to Y4

• IRQ connected to Y3

It is possible to use other SPI busses and other pins for CS, VBEN and IRQ.

Constructors

class network.CC3K(spi, pin_cs, pin_en, pin_irq)
Create a CC3K driver object, initialise the CC3000 module using the given SPI bus and pins, and
return the CC3K object.

Arguments are:

• spi is an SPI object which is the SPI bus that the CC3000 is connected to (the MOSI, MISO and
CLK pins).

• pin_cs is a Pin object which is connected to the CC3000 CS pin.

• pin_en is a Pin object which is connected to the CC3000 VBEN pin.

• pin_irq is a Pin object which is connected to the CC3000 IRQ pin.

All of these objects will be initialised by the driver, so there is no need to initialise them yourself. For
example, you can use:

nic = network.CC3K(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3)

Methods

CC3K.connect(ssid, key=None, *, security=WPA2, bssid=None)
Connect to a WiFi access point using the given SSID, and other security parameters.

CC3K.disconnect()
Disconnect from the WiFi access point.

CC3K.isconnected()
Returns True if connected to a WiFi access point and has a valid IP address, False otherwise.

CC3K.ifconfig()
Returns a 7-tuple with (ip, subnet mask, gateway, DNS server, DHCP server, MAC address, SSID).

CC3K.patch_version()
Return the version of the patch program (firmware) on the CC3000.

CC3K.patch_program(’pgm’)
Upload the current firmware to the CC3000. You must pass ‘pgm’ as the first argument in order for
the upload to proceed.

Constants

CC3K.WEP
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CC3K.WPA

CC3K.WPA2
security type to use

class WIZNET5K – control WIZnet5x00 Ethernet modules

This class allows you to control WIZnet5x00 Ethernet adaptors based on the W5200 and W5500
chipsets. The particular chipset that is supported by the firmware is selected at compile-time via the
MICROPY_PY_WIZNET5K option.

Example usage:

import network
nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)
print(nic.ifconfig())

# now use socket as usual
...

For this example to work the WIZnet5x00 module must have the following connections:

• MOSI connected to X8

• MISO connected to X7

• SCLK connected to X6

• nSS connected to X5

• nRESET connected to X4

It is possible to use other SPI busses and other pins for nSS and nRESET.

Constructors

class network.WIZNET5K(spi, pin_cs, pin_rst)
Create a WIZNET5K driver object, initialise the WIZnet5x00 module using the given SPI bus and
pins, and return the WIZNET5K object.

Arguments are:

• spi is an SPI object which is the SPI bus that the WIZnet5x00 is connected to (the MOSI, MISO
and SCLK pins).

• pin_cs is a Pin object which is connected to the WIZnet5x00 nSS pin.

• pin_rst is a Pin object which is connected to the WIZnet5x00 nRESET pin.

All of these objects will be initialised by the driver, so there is no need to initialise them yourself. For
example, you can use:

nic = network.WIZNET5K(pyb.SPI(1), pyb.Pin.board.X5, pyb.Pin.board.X4)

Methods

WIZNET5K.isconnected()
Returns True if the physical Ethernet link is connected and up. Returns False otherwise.
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WIZNET5K.ifconfig([(ip, subnet, gateway, dns) ])
Get/set IP address, subnet mask, gateway and DNS.

When called with no arguments, this method returns a 4-tuple with the above information.

To set the above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

WIZNET5K.regs()
Dump the WIZnet5x00 registers. Useful for debugging.

Network functions

The following are functions available in the network module.

network.phy_mode([mode ])
Get or set the PHY mode.

If the mode parameter is provided, sets the mode to its value. If the function is called without
parameters, returns the current mode.

The possible modes are defined as constants:

• MODE_11B – IEEE 802.11b,

• MODE_11G – IEEE 802.11g,

• MODE_11N – IEEE 802.11n.

Availability: ESP8266.

1.2.6 ucryptolib – cryptographic ciphers

Classes

class ucryptolib.aes

classmethod __init__(key, mode[, IV ])
Initialize cipher object, suitable for encryption/decryption. Note: after initialization, cipher object
can be use only either for encryption or decryption. Running decrypt() operation after encrypt()
or vice versa is not supported.

Parameters are:

• key is an encryption/decryption key (bytes-like).

• mode is:

– 1 (or ucryptolib.MODE_ECB if it exists) for Electronic Code Book (ECB).

– 2 (or ucryptolib.MODE_CBC if it exists) for Cipher Block Chaining (CBC).

– 6 (or ucryptolib.MODE_CTR if it exists) for Counter mode (CTR).

• IV is an initialization vector for CBC mode.

• For Counter mode, IV is the initial value for the counter.
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encrypt(in_buf [, out_buf ])
Encrypt in_buf. If no out_buf is given result is returned as a newly allocated bytes object.
Otherwise, result is written into mutable buffer out_buf. in_buf and out_buf can also refer to
the same mutable buffer, in which case data is encrypted in-place.

decrypt(in_buf [, out_buf ])
Like encrypt(), but for decryption.

1.2.7 uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s
ctypes modules, but the actual API is different, streamlined and optimized for small size. The basic idea
of the module is to define data structure layout with about the same power as the C language allows, and
then access it using familiar dot-syntax to reference sub-fields.

��: uctypes module allows access to arbitrary memory addresses of the machine (including I/O and
control registers). Uncareful usage of it may lead to crashes, data loss, and even hardware malfunction.

��:

Module ustruct Standard Python way to access binary data structures (doesn’t scale well to large and
complex structures).

Usage examples:

import uctypes

# Example 1: Subset of ELF file header
# https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {

"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,

}

# "f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN.
↪→"
print("machine:", hex(header.e_machine))

# Example 2: In-memory data structure, with pointers
COORD = {

"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,

}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,

(����)
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(���)

"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),

}

# Suppose you have address of a structure of type STRUCT1 in "addr"
# uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

# Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {

"WWDG_CR": (0, {
# BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
"WWDG_CFR": (4, {

"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and
other properties required to access them as associated values:

{
"field1": <properties>,
"field2": <properties>,
...

}

Currently, uctypes requires explicit specification of offsets for each field. Offset are given in bytes from the
structure start.

Following are encoding examples for various field types:

• Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset (in bytes) from the start of
the structure.
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• Recursive structures:

"sub": (offset, {
"b0": 0 | uctypes.UINT8,
"b1": 1 | uctypes.UINT8,

})

i.e. value is a 2-tuple, first element of which is an offset, and second is a structure descriptor dictionary
(note: offsets in recursive descriptors are relative to the structure it defines). Of course, recursive
structures can be specified not just by a literal dictionary, but by referring to a structure descriptor
dictionary (defined earlier) by name.

• Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar
element type ORed number of elements in the array.

• Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of
elements in the array, and third is a descriptor of element type.

• Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is a scalar
element type.

• Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is a descriptor of
type pointed to.

• Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.
↪→BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are similar to scalar types, but
prefixes with BF), ORed with offset for scalar value containing the bitfield, and further ORed with
values for bit position and bit length of the bitfield within the scalar value, shifted by BF_POS and
BF_LEN bits, respectively. A bitfield position is counted from the least significant bit of the scalar
(having position of 0), and is the number of right-most bit of a field (in other words, it’s a number of
bits a scalar needs to be shifted right to extract the bitfield).

In the example above, first a UINT16 value will be extracted at offset 0 (this detail may be important
when accessing hardware registers, where particular access size and alignment are required), and then
bitfield whose rightmost bit is lsbit bit of this UINT16, and length is bitsize bits, will be extracted. For
example, if lsbit is 0 and bitsize is 8, then effectively it will access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above
will access least-significant byte of UINT16 in both little- and big-endian structures. But it depends on
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the least significant bit being numbered 0. Some targets may use different numbering in their native
ABI, but uctypes always uses the normalized numbering described above.

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded
as a dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN
Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as
many bytes as defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN
Layout type for a big-endian packed structure.

uctypes.NATIVE
Layout type for a native structure - with data endianness and alignment conforming to the ABI of the
system on which MicroPython runs.

uctypes.sizeof(struct, layout_type=NATIVE)
Return size of data structure in bytes. The struct argument can be either a structure class or a specific
instantiated structure object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer
protocol (and address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory
is actually duplicated and copied into bytes object, so if memory contents change later, created object
retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above,
memory is captured by reference, so it can be both written too, and you will access current value at
the given memory address.

uctypes.UINT8
uctypes.INT8
uctypes.UINT16
uctypes.INT16
uctypes.UINT32
uctypes.INT32
uctypes.UINT64
uctypes.INT64

Integer types for structure descriptors. Constants for 8, 16, 32, and 64 bit types are provided, both
signed and unsigned.

uctypes.FLOAT32
uctypes.FLOAT64

Floating-point types for structure descriptors.

uctypes.VOID
VOID is an alias for UINT8, and is provided to conviniently define C’s void pointers: (uctypes.PTR,
uctypes.VOID).

uctypes.PTR
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uctypes.ARRAY
Type constants for pointers and arrays. Note that there is no explicit constant for structures, it’s
implicit: an aggregate type without PTR or ARRAY flags is a structure.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance
at a given memory address using uctypes.struct() constructor. Memory address usually comes from
following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses
in datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively,
to access some data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.
field1. If a field is of scalar type, getting it will produce a primitive value (Python integer or float)
corresponding to the value contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both
read and assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0]
works in C too). Subscripting a pointer with other integer values but 0 are also supported, with the same
semantics as in C.

Summing up, accessing structure fields generally follows the C syntax, except for pointer dereference, when
you need to use [0] operator instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that
special care should be taken to layout a structure which needs to be accessed when memory allocation is
disabled (e.g. from an interrupt). The recommendations are:

• Avoid accessing nested structures. For example, instead of mcu_registers.peripheral_a.register1,
define separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1.
Or just cache a particular peripheral: peripheral_a = mcu_registers.peripheral_a. If a register
consists of multiple bitfields, you would need to cache references to a particular register: reg_a =
mcu_registers.peripheral_a.reg_a.

• Avoid other non-scalar data, like arrays. For example, instead of peripheral_a.register[0] use
peripheral_a.register0. Again, an alternative is to cache intermediate values, e.g. register0 =
peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited. The exact range supported is considered
an implementation detail, and the general suggestion is to split structure definitions to cover from a few
kilobytes to a few dozen of kilobytes maximum. In most cases, this is a natural situation anyway, e.g. it
doesn’t make sense to define all registers of an MCU (spread over 32-bit address space) in one structure,
but rather a peripheral block by peripheral block. In some extreme cases, you may need to split a structure

76 Chapter 1. MicroPython libraries



MicroPython Documentation, �� 1.11

in several parts artificially (e.g. if accessing native data structure with multi-megabyte array in the middle,
though that would be a very synthetic case).

1.3 Libraries specific to the pyboard

The following libraries are specific to the pyboard.

1.3.1 pyb — functions related to the board

The pyb module contains specific functions related to the board.

Time related functions

pyb.delay(ms)
Delay for the given number of milliseconds.

pyb.udelay(us)
Delay for the given number of microseconds.

pyb.millis()
Returns the number of milliseconds since the board was last reset.

The result is always a MicroPython smallint (31-bit signed number), so after 2^30 milliseconds (about
12.4 days) this will start to return negative numbers.

Note that if pyb.stop() is issued the hardware counter supporting this function will pause for the
duration of the “sleeping” state. This will affect the outcome of pyb.elapsed_millis().

pyb.micros()
Returns the number of microseconds since the board was last reset.

The result is always a MicroPython smallint (31-bit signed number), so after 2^30 microseconds (about
17.8 minutes) this will start to return negative numbers.

Note that if pyb.stop() is issued the hardware counter supporting this function will pause for the
duration of the “sleeping” state. This will affect the outcome of pyb.elapsed_micros().

pyb.elapsed_millis(start)
Returns the number of milliseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods up to about 12.4 days.

Example:

start = pyb.millis()
while pyb.elapsed_millis(start) < 1000:

# Perform some operation

pyb.elapsed_micros(start)
Returns the number of microseconds which have elapsed since start.

This function takes care of counter wrap, and always returns a positive number. This means it can be
used to measure periods up to about 17.8 minutes.

Example:
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start = pyb.micros()
while pyb.elapsed_micros(start) < 1000:

# Perform some operation
pass

Reset related functions

pyb.hard_reset()
Resets the pyboard in a manner similar to pushing the external RESET button.

pyb.bootloader()
Activate the bootloader without BOOT* pins.

pyb.fault_debug(value)
Enable or disable hard-fault debugging. A hard-fault is when there is a fatal error in the underlying
system, like an invalid memory access.

If the value argument is False then the board will automatically reset if there is a hard fault.

If value is True then, when the board has a hard fault, it will print the registers and the stack trace,
and then cycle the LEDs indefinitely.

The default value is disabled, i.e. to automatically reset.

Interrupt related functions

pyb.disable_irq()
Disable interrupt requests. Returns the previous IRQ state: False/True for disabled/enabled IRQs
respectively. This return value can be passed to enable_irq to restore the IRQ to its original state.

pyb.enable_irq(state=True)
Enable interrupt requests. If state is True (the default value) then IRQs are enabled. If state is
False then IRQs are disabled. The most common use of this function is to pass it the value returned
by disable_irq to exit a critical section.

Power related functions

pyb.freq([sysclk[, hclk[, pclk1[, pclk2 ] ] ] ])
If given no arguments, returns a tuple of clock frequencies: (sysclk, hclk, pclk1, pclk2). These corre-
spond to:

• sysclk: frequency of the CPU

• hclk: frequency of the AHB bus, core memory and DMA

• pclk1: frequency of the APB1 bus

• pclk2: frequency of the APB2 bus

If given any arguments then the function sets the frequency of the CPU, and the busses if additional
arguments are given. Frequencies are given in Hz. Eg freq(120000000) sets sysclk (the CPU frequency)
to 120MHz. Note that not all values are supported and the largest supported frequency not greater
than the given value will be selected.

Supported sysclk frequencies are (in MHz): 8, 16, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 84, 96,
108, 120, 144, 168.
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The maximum frequency of hclk is 168MHz, of pclk1 is 42MHz, and of pclk2 is 84MHz. Be sure not
to set frequencies above these values.

The hclk, pclk1 and pclk2 frequencies are derived from the sysclk frequency using a prescaler (divider).
Supported prescalers for hclk are: 1, 2, 4, 8, 16, 64, 128, 256, 512. Supported prescalers for pclk1 and
pclk2 are: 1, 2, 4, 8. A prescaler will be chosen to best match the requested frequency.

A sysclk frequency of 8MHz uses the HSE (external crystal) directly and 16MHz uses the HSI (internal
oscillator) directly. The higher frequencies use the HSE to drive the PLL (phase locked loop), and then
use the output of the PLL.

Note that if you change the frequency while the USB is enabled then the USB may become unreliable.
It is best to change the frequency in boot.py, before the USB peripheral is started. Also note that
sysclk frequencies below 36MHz do not allow the USB to function correctly.

pyb.wfi()
Wait for an internal or external interrupt.

This executes a wfi instruction which reduces power consumption of the MCU until any interrupt
occurs (be it internal or external), at which point execution continues. Note that the system-tick
interrupt occurs once every millisecond (1000Hz) so this function will block for at most 1ms.

pyb.stop()
Put the pyboard in a “sleeping” state.

This reduces power consumption to less than 500 uA. To wake from this sleep state requires an external
interrupt or a real-time-clock event. Upon waking execution continues where it left off.

See rtc.wakeup() to configure a real-time-clock wakeup event.

pyb.standby()
Put the pyboard into a “deep sleep” state.

This reduces power consumption to less than 50 uA. To wake from this sleep state requires a real-time-
clock event, or an external interrupt on X1 (PA0=WKUP) or X18 (PC13=TAMP1). Upon waking the
system undergoes a hard reset.

See rtc.wakeup() to configure a real-time-clock wakeup event.

Miscellaneous functions

pyb.have_cdc()
Return True if USB is connected as a serial device, False otherwise.

��: This function is deprecated. Use pyb.USB_VCP().isconnected() instead.

pyb.hid((buttons, x, y, z))
Takes a 4-tuple (or list) and sends it to the USB host (the PC) to signal a HID mouse-motion event.

��: This function is deprecated. Use pyb.USB_HID.send() instead.

pyb.info([dump_alloc_table ])
Print out lots of information about the board.

pyb.main(filename)
Set the filename of the main script to run after boot.py is finished. If this function is not called then
the default file main.py will be executed.
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It only makes sense to call this function from within boot.py.

pyb.mount(device, mountpoint, *, readonly=False, mkfs=False)

��: This function is deprecated. Mounting and unmounting devices should be performed by uos.
mount() and uos.umount() instead.

Mount a block device and make it available as part of the filesystem. device must be an object that
provides the block protocol. (The following is also deprecated. See uos.AbstractBlockDev for the
correct way to create a block device.)

• readblocks(self, blocknum, buf)

• writeblocks(self, blocknum, buf) (optional)

• count(self)

• sync(self) (optional)

readblocks and writeblocks should copy data between buf and the block device, starting from block
number blocknum on the device. buf will be a bytearray with length a multiple of 512. If writeblocks
is not defined then the device is mounted read-only. The return value of these two functions is ignored.

count should return the number of blocks available on the device. sync, if implemented, should sync
the data on the device.

The parameter mountpoint is the location in the root of the filesystem to mount the device. It must
begin with a forward-slash.

If readonly is True, then the device is mounted read-only, otherwise it is mounted read-write.

If mkfs is True, then a new filesystem is created if one does not already exist.

pyb.repl_uart(uart)
Get or set the UART object where the REPL is repeated on.

pyb.rng()
Return a 30-bit hardware generated random number.

pyb.sync()
Sync all file systems.

pyb.unique_id()
Returns a string of 12 bytes (96 bits), which is the unique ID of the MCU.

pyb.usb_mode([modestr ], vid=0xf055, pid=0x9801, hid=pyb.hid_mouse)
If called with no arguments, return the current USB mode as a string.

If called with modestr provided, attempts to set USB mode. This can only be done when called from
boot.py before pyb.main() has been called. The following values of modestr are understood:

• None: disables USB

• 'VCP': enable with VCP (Virtual COM Port) interface

• 'MSC': enable with MSC (mass storage device class) interface

• 'VCP+MSC': enable with VCP and MSC

• 'VCP+HID': enable with VCP and HID (human interface device)
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For backwards compatibility, 'CDC' is understood to mean 'VCP' (and similarly for 'CDC+MSC' and
'CDC+HID').

The vid and pid parameters allow you to specify the VID (vendor id) and PID (product id).

If enabling HID mode, you may also specify the HID details by passing the hid keyword parameter. It
takes a tuple of (subclass, protocol, max packet length, polling interval, report descriptor). By default
it will set appropriate values for a USB mouse. There is also a pyb.hid_keyboard constant, which is
an appropriate tuple for a USB keyboard.

Classes

class Accel – accelerometer control

Accel is an object that controls the accelerometer. Example usage:

accel = pyb.Accel()
for i in range(10):

print(accel.x(), accel.y(), accel.z())

Raw values are between -32 and 31.

Constructors

class pyb.Accel
Create and return an accelerometer object.

Methods

Accel.filtered_xyz()
Get a 3-tuple of filtered x, y and z values.

Implementation note: this method is currently implemented as taking the sum of 4 samples, sampled
from the 3 previous calls to this function along with the sample from the current call. Returned values
are therefore 4 times the size of what they would be from the raw x(), y() and z() calls.

Accel.tilt()
Get the tilt register.

Accel.x()
Get the x-axis value.

Accel.y()
Get the y-axis value.

Accel.z()
Get the z-axis value.

Hardware Note

The accelerometer uses I2C bus 1 to communicate with the processor. Consequently when readings are being
taken pins X9 and X10 should be unused (other than for I2C). Other devices using those pins, and which
therefore cannot be used concurrently, are UART 1 and Timer 4 channels 1 and 2.
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class ADC – analog to digital conversion

Usage:

import pyb

adc = pyb.ADC(pin) # create an analog object from a pin
val = adc.read() # read an analog value

adc = pyb.ADCAll(resolution) # create an ADCAll object
adc = pyb.ADCAll(resolution, mask) # create an ADCAll object for selected analog␣
↪→channels
val = adc.read_channel(channel) # read the given channel
val = adc.read_core_temp() # read MCU temperature
val = adc.read_core_vbat() # read MCU VBAT
val = adc.read_core_vref() # read MCU VREF
val = adc.read_vref() # read MCU supply voltage

Constructors

class pyb.ADC(pin)
Create an ADC object associated with the given pin. This allows you to then read analog values on
that pin.

Methods

ADC.read()
Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

ADC.read_timed(buf, timer)
Read analog values into buf at a rate set by the timer object.

buf can be bytearray or array.array for example. The ADC values have 12-bit resolution and are stored
directly into buf if its element size is 16 bits or greater. If buf has only 8-bit elements (eg a bytearray)
then the sample resolution will be reduced to 8 bits.

timer should be a Timer object, and a sample is read each time the timer triggers. The timer must
already be initialised and running at the desired sampling frequency.

To support previous behaviour of this function, timer can also be an integer which specifies the
frequency (in Hz) to sample at. In this case Timer(6) will be automatically configured to run at the
given frequency.

Example using a Timer object (preferred way):

adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
buf = bytearray(100) # creat a buffer to store the samples
adc.read_timed(buf, tim) # sample 100 values, taking 10s

Example using an integer for the frequency:
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adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
buf = bytearray(100) # create a buffer of 100 bytes
adc.read_timed(buf, 10) # read analog values into buf at 10Hz

# this will take 10 seconds to finish
for val in buf: # loop over all values

print(val) # print the value out

This function does not allocate any heap memory. It has blocking behaviour: it does not return to the
calling program until the buffer is full.

ADC.read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
This is a static method. It can be used to extract relative timing or phase data from multiple ADC’s.

It reads analog values from multiple ADC’s into buffers at a rate set by the timer object. Each time
the timer triggers a sample is rapidly read from each ADC in turn.

ADC and buffer instances are passed in tuples with each ADC having an associated buffer. All buffers
must be of the same type and length and the number of buffers must equal the number of ADC’s.

Buffers can be bytearray or array.array for example. The ADC values have 12-bit resolution and
are stored directly into the buffer if its element size is 16 bits or greater. If buffers have only 8-bit
elements (eg a bytearray) then the sample resolution will be reduced to 8 bits.

timer must be a Timer object. The timer must already be initialised and running at the desired
sampling frequency.

Example reading 3 ADC’s:

adc0 = pyb.ADC(pyb.Pin.board.X1) # Create ADC's
adc1 = pyb.ADC(pyb.Pin.board.X2)
adc2 = pyb.ADC(pyb.Pin.board.X3)
tim = pyb.Timer(8, freq=100) # Create timer
rx0 = array.array('H', (0 for i in range(100))) # ADC buffers of
rx1 = array.array('H', (0 for i in range(100))) # 100 16-bit words
rx2 = array.array('H', (0 for i in range(100)))
# read analog values into buffers at 100Hz (takes one second)
pyb.ADC.read_timed_multi((adc0, adc1, adc2), (rx0, rx1, rx2), tim)
for n in range(len(rx0)):

print(rx0[n], rx1[n], rx2[n])

This function does not allocate any heap memory. It has blocking behaviour: it does not return to the
calling program until the buffers are full.

The function returns True if all samples were acquired with correct timing. At high sample rates the
time taken to acquire a set of samples can exceed the timer period. In this case the function returns
False, indicating a loss of precision in the sample interval. In extreme cases samples may be missed.

The maximum rate depends on factors including the data width and the number of ADC’s being read.
In testing two ADC’s were sampled at a timer rate of 210kHz without overrun. Samples were missed
at 215kHz. For three ADC’s the limit is around 140kHz, and for four it is around 110kHz. At high
sample rates disabling interrupts for the duration can reduce the risk of sporadic data loss.

The ADCAll Object

Instantiating this changes all masked ADC pins to analog inputs. The preprocessed MCU temperature,
VREF and VBAT data can be accessed on ADC channels 16, 17 and 18 respectively. Appropriate scaling
is handled according to reference voltage used (usually 3.3V). The temperature sensor on the chip is factory
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calibrated and allows to read the die temperature to +/- 1 degree centigrade. Although this sounds pretty
accurate, don’t forget that the MCU’s internal temperature is measured. Depending on processing loads
and I/O subsystems active the die temperature may easily be tens of degrees above ambient temperature.
On the other hand a pyboard woken up after a long standby period will show correct ambient temperature
within limits mentioned above.

The ADCAll read_core_vbat(), read_vref() and read_core_vref() methods read the backup battery
voltage, reference voltage and the (1.21V nominal) reference voltage using the actual supply as a reference.
All results are floating point numbers giving direct voltage values.

read_core_vbat() returns the voltage of the backup battery. This voltage is also adjusted according to the
actual supply voltage. To avoid analog input overload the battery voltage is measured via a voltage divider
and scaled according to the divider value. To prevent excessive loads to the backup battery, the voltage
divider is only active during ADC conversion.

read_vref() is evaluated by measuring the internal voltage reference and backscale it using factory calibra-
tion value of the internal voltage reference. In most cases the reading would be close to 3.3V. If the pyboard
is operated from a battery, the supply voltage may drop to values below 3.3V. The pyboard will still operate
fine as long as the operating conditions are met. With proper settings of MCU clock, flash access speed and
programming mode it is possible to run the pyboard down to 2 V and still get useful ADC conversion.

It is very important to make sure analog input voltages never exceed actual supply voltage.

Other analog input channels (0..15) will return unscaled integer values according to the selected precision.

To avoid unwanted activation of analog inputs (channel 0..15) a second parameter can be specified. This
parameter is a binary pattern where each requested analog input has the corresponding bit set. The default
value is 0xffffffff which means all analog inputs are active. If just the internal channels (16..18) are required,
the mask value should be 0x70000.

Example:

adcall = pyb.ADCAll(12, 0x70000) # 12 bit resolution, internal channels
temp = adcall.read_core_temp()

class CAN – controller area network communication bus

CAN implements the standard CAN communications protocol. At the physical level it consists of 2 lines:
RX and TX. Note that to connect the pyboard to a CAN bus you must use a CAN transceiver to convert
the CAN logic signals from the pyboard to the correct voltage levels on the bus.

Example usage (works without anything connected):

from pyb import CAN
can = CAN(1, CAN.LOOPBACK)
can.setfilter(0, CAN.LIST16, 0, (123, 124, 125, 126)) # set a filter to receive␣
↪→messages with id=123, 124, 125 and 126
can.send('message!', 123) # send a message with id 123
can.recv(0) # receive message on FIFO 0

Constructors

class pyb.CAN(bus, ...)
Construct a CAN object on the given bus. bus can be 1-2, or 'YA' or 'YB'. With no additional
parameters, the CAN object is created but not initialised (it has the settings from the last initialisation
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of the bus, if any). If extra arguments are given, the bus is initialised. See CAN.init() for parameters
of initialisation.

The physical pins of the CAN busses are:

• CAN(1) is on YA: (RX, TX) = (Y3, Y4) = (PB8, PB9)

• CAN(2) is on YB: (RX, TX) = (Y5, Y6) = (PB12, PB13)

Class Methods

classmethod CAN.initfilterbanks(nr)
Reset and disable all filter banks and assign how many banks should be available for CAN(1).

STM32F405 has 28 filter banks that are shared between the two available CAN bus controllers. This
function configures how many filter banks should be assigned to each. nr is the number of banks that
will be assigned to CAN(1), the rest of the 28 are assigned to CAN(2). At boot, 14 banks are assigned
to each controller.

Methods

CAN.init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8, auto_restart=False)
Initialise the CAN bus with the given parameters:

• mode is one of: NORMAL, LOOPBACK, SILENT, SILENT_LOOPBACK

• if extframe is True then the bus uses extended identifiers in the frames (29 bits); otherwise it uses
standard 11 bit identifiers

• prescaler is used to set the duration of 1 time quanta; the time quanta will be the input clock
(PCLK1, see pyb.freq()) divided by the prescaler

• sjw is the resynchronisation jump width in units of the time quanta; it can be 1, 2, 3, 4

• bs1 defines the location of the sample point in units of the time quanta; it can be between 1 and
1024 inclusive

• bs2 defines the location of the transmit point in units of the time quanta; it can be between 1 and
16 inclusive

• auto_restart sets whether the controller will automatically try and restart communications after
entering the bus-off state; if this is disabled then restart() can be used to leave the bus-off state

The time quanta tq is the basic unit of time for the CAN bus. tq is the CAN prescaler value divided
by PCLK1 (the frequency of internal peripheral bus 1); see pyb.freq() to determine PCLK1.

A single bit is made up of the synchronisation segment, which is always 1 tq. Then follows bit segment
1, then bit segment 2. The sample point is after bit segment 1 finishes. The transmit point is after bit
segment 2 finishes. The baud rate will be 1/bittime, where the bittime is 1 + BS1 + BS2 multiplied
by the time quanta tq.

For example, with PCLK1=42MHz, prescaler=100, sjw=1, bs1=6, bs2=8, the value of tq is 2.38
microseconds. The bittime is 35.7 microseconds, and the baudrate is 28kHz.

See page 680 of the STM32F405 datasheet for more details.

CAN.deinit()
Turn off the CAN bus.
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CAN.restart()
Force a software restart of the CAN controller without resetting its configuration.

If the controller enters the bus-off state then it will no longer participate in bus activity. If the controller
is not configured to automatically restart (see init()) then this method can be used to trigger a restart,
and the controller will follow the CAN protocol to leave the bus-off state and go into the error active
state.

CAN.state()
Return the state of the controller. The return value can be one of:

• CAN.STOPPED – the controller is completely off and reset;

• CAN.ERROR_ACTIVE – the controller is on and in the Error Active state (both TEC and REC are
less than 96);

• CAN.ERROR_WARNING – the controller is on and in the Error Warning state (at least one of TEC
or REC is 96 or greater);

• CAN.ERROR_PASSIVE – the controller is on and in the Error Passive state (at least one of TEC or
REC is 128 or greater);

• CAN.BUS_OFF – the controller is on but not participating in bus activity (TEC overflowed beyond
255).

CAN.info([list ])
Get information about the controller’s error states and TX and RX buffers. If list is provided then it
should be a list object with at least 8 entries, which will be filled in with the information. Otherwise
a new list will be created and filled in. In both cases the return value of the method is the populated
list.

The values in the list are:

• TEC value

• REC value

• number of times the controller enterted the Error Warning state (wrapped around to 0 after
65535)

• number of times the controller enterted the Error Passive state (wrapped around to 0 after 65535)

• number of times the controller enterted the Bus Off state (wrapped around to 0 after 65535)

• number of pending TX messages

• number of pending RX messages on fifo 0

• number of pending RX messages on fifo 1

CAN.setfilter(bank, mode, fifo, params, *, rtr)
Configure a filter bank:

• bank is the filter bank that is to be configured.

• mode is the mode the filter should operate in.

• fifo is which fifo (0 or 1) a message should be stored in, if it is accepted by this filter.

• params is an array of values the defines the filter. The contents of the array depends on the mode
argument.
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mode contents of params array
CAN.LIST16 Four 16 bit ids that will be accepted
CAN.LIST32 Two 32 bit ids that will be accepted
CAN.MASK16

Two 16 bit id/mask pairs. E.g. (1, 3, 4, 4)

The first pair, 1 and 3 will accept all ids
that have bit 0 = 1 and bit 1 = 0.
The second pair, 4 and 4, will accept all
ids
that have bit 2 = 1.

CAN.MASK32 As with CAN.MASK16 but with only one 32 bit
id/mask pair.

• rtr is an array of booleans that states if a filter should accept a remote transmission request
message. If this argument is not given then it defaults to False for all entries. The length of the
array depends on the mode argument.

mode length of rtr array
CAN.LIST16 4
CAN.LIST32 2
CAN.MASK16 2
CAN.MASK32 1

CAN.clearfilter(bank)
Clear and disables a filter bank:

• bank is the filter bank that is to be cleared.

CAN.any(fifo)
Return True if any message waiting on the FIFO, else False.

CAN.recv(fifo, list=None, *, timeout=5000)
Receive data on the bus:

• fifo is an integer, which is the FIFO to receive on

• list is an optional list object to be used as the return value

• timeout is the timeout in milliseconds to wait for the receive.

Return value: A tuple containing four values.

• The id of the message.

• A boolean that indicates if the message is an RTR message.

• The FMI (Filter Match Index) value.

• An array containing the data.

If list is None then a new tuple will be allocated, as well as a new bytes object to contain the data (as
the fourth element in the tuple).

If list is not None then it should be a list object with a least four elements. The fourth element should
be a memoryview object which is created from either a bytearray or an array of type ‘B’ or ‘b’, and
this array must have enough room for at least 8 bytes. The list object will then be populated with the
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first three return values above, and the memoryview object will be resized inplace to the size of the
data and filled in with that data. The same list and memoryview objects can be reused in subsequent
calls to this method, providing a way of receiving data without using the heap. For example:

buf = bytearray(8)
lst = [0, 0, 0, memoryview(buf)]
# No heap memory is allocated in the following call
can.recv(0, lst)

CAN.send(data, id, *, timeout=0, rtr=False)
Send a message on the bus:

• data is the data to send (an integer to send, or a buffer object).

• id is the id of the message to be sent.

• timeout is the timeout in milliseconds to wait for the send.

• rtr is a boolean that specifies if the message shall be sent as a remote transmission
request. If rtr is True then only the length of data is used to fill in the DLC slot of the
frame; the actual bytes in data are unused.

If timeout is 0 the message is placed in a buffer in one of three hardware buffers and the
method returns immediately. If all three buffers are in use an exception is thrown. If
timeout is not 0, the method waits until the message is transmitted. If the message can’t be
transmitted within the specified time an exception is thrown.

Return value: None.

CAN.rxcallback(fifo, fun)
Register a function to be called when a message is accepted into a empty fifo:

• fifo is the receiving fifo.

• fun is the function to be called when the fifo becomes non empty.

The callback function takes two arguments the first is the can object it self the second is a integer that
indicates the reason for the callback.

Reason
0 A message has been accepted into a empty FIFO.
1 The FIFO is full
2 A message has been lost due to a full FIFO

Example use of rxcallback:

def cb0(bus, reason):
print('cb0')
if reason == 0:

print('pending')
if reason == 1:

print('full')
if reason == 2:

print('overflow')

can = CAN(1, CAN.LOOPBACK)
can.rxcallback(0, cb0)
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Constants

CAN.NORMAL
CAN.LOOPBACK
CAN.SILENT
CAN.SILENT_LOOPBACK

The mode of the CAN bus used in init().

CAN.STOPPED
CAN.ERROR_ACTIVE
CAN.ERROR_WARNING
CAN.ERROR_PASSIVE
CAN.BUS_OFF

Possible states of the CAN controller returned from state().

CAN.LIST16
CAN.MASK16
CAN.LIST32
CAN.MASK32

The operation mode of a filter used in setfilter().

class DAC – digital to analog conversion

The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. The voltage will be
between 0 and 3.3V.

This module will undergo changes to the API.

Example usage:

from pyb import DAC

dac = DAC(1) # create DAC 1 on pin X5
dac.write(128) # write a value to the DAC (makes X5 1.65V)

dac = DAC(1, bits=12) # use 12 bit resolution
dac.write(4095) # output maximum value, 3.3V

To output a continuous sine-wave:

import math
from pyb import DAC

# create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

# output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

To output a continuous sine-wave at 12-bit resolution:
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import math
from array import array
from pyb import DAC

# create a buffer containing a sine-wave, using half-word samples
buf = array('H', 2048 + int(2047 * math.sin(2 * math.pi * i / 128)) for i in range(128))

# output the sine-wave at 400Hz
dac = DAC(1, bits=12)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

Constructors

class pyb.DAC(port, bits=8, *, buffering=None)
Construct a new DAC object.

port can be a pin object, or an integer (1 or 2). DAC(1) is on pin X5 and DAC(2) is on pin X6.

bits is an integer specifying the resolution, and can be 8 or 12. The maximum value for the write and
write_timed methods will be 2**‘‘bits‘‘-1.

The buffering parameter selects the behaviour of the DAC op-amp output buffer, whose purpose is to
reduce the output impedance. It can be None to select the default (buffering enabled for DAC.noise(),
DAC.triangle() and DAC.write_timed(), and disabled for DAC.write()), False to disable buffering
completely, or True to enable output buffering.

When buffering is enabled the DAC pin can drive loads down to 5KΩ. Otherwise it has an output
impedance of 15KΩ maximum: consequently to achieve a 1% accuracy without buffering requires the
applied load to be less than 1.5MΩ. Using the buffer incurs a penalty in accuracy, especially near the
extremes of range.

Methods

DAC.init(bits=8, *, buffering=None)
Reinitialise the DAC. bits can be 8 or 12. buffering can be None, False or True; see above constructor
for the meaning of this parameter.

DAC.deinit()
De-initialise the DAC making its pin available for other uses.

DAC.noise(freq)
Generate a pseudo-random noise signal. A new random sample is written to the DAC output at the
given frequency.

DAC.triangle(freq)
Generate a triangle wave. The value on the DAC output changes at the given frequency, and the
frequency of the repeating triangle wave itself is 2048 times smaller.

DAC.write(value)
Direct access to the DAC output. The minimum value is 0. The maximum value is 2**‘‘bits‘‘-1, where
bits is set when creating the DAC object or by using the init method.

DAC.write_timed(data, freq, *, mode=DAC.NORMAL)
Initiates a burst of RAM to DAC using a DMA transfer. The input data is treated as an array of bytes
in 8-bit mode, and an array of unsigned half-words (array typecode ‘H’) in 12-bit mode.
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freq can be an integer specifying the frequency to write the DAC samples at, using Timer(6). Or it
can be an already-initialised Timer object which is used to trigger the DAC sample. Valid timers are
2, 4, 5, 6, 7 and 8.

mode can be DAC.NORMAL or DAC.CIRCULAR.

Example using both DACs at the same time:

dac1 = DAC(1)
dac2 = DAC(2)
dac1.write_timed(buf1, pyb.Timer(6, freq=100), mode=DAC.CIRCULAR)
dac2.write_timed(buf2, pyb.Timer(7, freq=200), mode=DAC.CIRCULAR)

class ExtInt – configure I/O pins to interrupt on external events

There are a total of 22 interrupt lines. 16 of these can come from GPIO pins and the remaining 6 are from
internal sources.

For lines 0 through 15, a given line can map to the corresponding line from an arbitrary port. So line 0 can
map to Px0 where x is A, B, C, … and line 1 can map to Px1 where x is A, B, C, …

def callback(line):
print("line =", line)

Note: ExtInt will automatically configure the gpio line as an input.

extint = pyb.ExtInt(pin, pyb.ExtInt.IRQ_FALLING, pyb.Pin.PULL_UP, callback)

Now every time a falling edge is seen on the X1 pin, the callback will be called. Caution: mechanical
pushbuttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques
for debouncing.

Trying to register 2 callbacks onto the same pin will throw an exception.

If pin is passed as an integer, then it is assumed to map to one of the internal interrupt sources, and must
be in the range 16 through 22.

All other pin objects go through the pin mapper to come up with one of the gpio pins.

extint = pyb.ExtInt(pin, mode, pull, callback)

Valid modes are pyb.ExtInt.IRQ_RISING, pyb.ExtInt.IRQ_FALLING,
pyb.ExtInt.IRQ_RISING_FALLING, pyb.ExtInt.EVT_RISING, pyb.ExtInt.EVT_FALLING, and
pyb.ExtInt.EVT_RISING_FALLING.

Only the IRQ_xxx modes have been tested. The EVT_xxx modes have something to do with sleep mode
and the WFE instruction.

Valid pull values are pyb.Pin.PULL_UP, pyb.Pin.PULL_DOWN, pyb.Pin.PULL_NONE.

There is also a C API, so that drivers which require EXTI interrupt lines can also use this code. See extint.h
for the available functions and usrsw.h for an example of using this.
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Constructors

class pyb.ExtInt(pin, mode, pull, callback)
Create an ExtInt object:

• pin is the pin on which to enable the interrupt (can be a pin object or any valid pin name).

• mode can be one of: - ExtInt.IRQ_RISING - trigger on a rising edge; - ExtInt.IRQ_FALLING -
trigger on a falling edge; - ExtInt.IRQ_RISING_FALLING - trigger on a rising or falling edge.

• pull can be one of: - pyb.Pin.PULL_NONE - no pull up or down resistors; - pyb.Pin.PULL_UP -
enable the pull-up resistor; - pyb.Pin.PULL_DOWN - enable the pull-down resistor.

• callback is the function to call when the interrupt triggers. The callback function must accept
exactly 1 argument, which is the line that triggered the interrupt.

Class methods

classmethod ExtInt.regs()
Dump the values of the EXTI registers.

Methods

ExtInt.disable()
Disable the interrupt associated with the ExtInt object. This could be useful for debouncing.

ExtInt.enable()
Enable a disabled interrupt.

ExtInt.line()
Return the line number that the pin is mapped to.

ExtInt.swint()
Trigger the callback from software.

Constants

ExtInt.IRQ_FALLING
interrupt on a falling edge

ExtInt.IRQ_RISING
interrupt on a rising edge

ExtInt.IRQ_RISING_FALLING
interrupt on a rising or falling edge

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires:
SCL and SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later
on.

Example:
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from pyb import I2C

i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=20000) # init as a master
i2c.init(I2C.SLAVE, addr=0x42) # init as a slave with given address
i2c.deinit() # turn off the peripheral

Printing the i2c object gives you information about its configuration.

The basic methods are send and recv:

i2c.send('abc') # send 3 bytes
i2c.send(0x42) # send a single byte, given by the number
data = i2c.recv(3) # receive 3 bytes

To receive inplace, first create a bytearray:

data = bytearray(3) # create a buffer
i2c.recv(data) # receive 3 bytes, writing them into data

You can specify a timeout (in ms):

i2c.send(b'123', timeout=2000) # timeout after 2 seconds

A master must specify the recipient’s address:

i2c.init(I2C.MASTER)
i2c.send('123', 0x42) # send 3 bytes to slave with address 0x42
i2c.send(b'456', addr=0x42) # keyword for address

Master also has other methods:

i2c.is_ready(0x42) # check if slave 0x42 is ready
i2c.scan() # scan for slaves on the bus, returning

# a list of valid addresses
i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42,

# starting at address 2 in the slave
i2c.mem_write('abc', 0x42, 2, timeout=1000) # write 'abc' (3 bytes) to memory of slave␣
↪→0x42

# starting at address 2 in the slave,␣
↪→timeout after 1 second

Constructors

class pyb.I2C(bus, ...)
Construct an I2C object on the given bus. bus can be 1 or 2, ‘X’ or ‘Y’. With no additional parameters,
the I2C object is created but not initialised (it has the settings from the last initialisation of the bus,
if any). If extra arguments are given, the bus is initialised. See init for parameters of initialisation.

The physical pins of the I2C busses on Pyboards V1.0 and V1.1 are:

• I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

• I2C(2) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PB10, PB11)
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On the Pyboard Lite:

• I2C(1) is on the X position: (SCL, SDA) = (X9, X10) = (PB6, PB7)

• I2C(3) is on the Y position: (SCL, SDA) = (Y9, Y10) = (PA8, PB8)

Calling the constructor with ‘X’ or ‘Y’ enables portability between Pyboard types.

Methods

I2C.deinit()
Turn off the I2C bus.

I2C.init(mode, *, addr=0x12, baudrate=400000, gencall=False, dma=False)
Initialise the I2C bus with the given parameters:

• mode must be either I2C.MASTER or I2C.SLAVE

• addr is the 7-bit address (only sensible for a slave)

• baudrate is the SCL clock rate (only sensible for a master)

• gencall is whether to support general call mode

• dma is whether to allow the use of DMA for the I2C transfers (note that DMA transfers have more
precise timing but currently do not handle bus errors properly)

I2C.is_ready(addr)
Check if an I2C device responds to the given address. Only valid when in master mode.

I2C.mem_read(data, addr, memaddr, *, timeout=5000, addr_size=8)
Read from the memory of an I2C device:

• data can be an integer (number of bytes to read) or a buffer to read into

• addr is the I2C device address

• memaddr is the memory location within the I2C device

• timeout is the timeout in milliseconds to wait for the read

• addr_size selects width of memaddr: 8 or 16 bits

Returns the read data. This is only valid in master mode.

I2C.mem_write(data, addr, memaddr, *, timeout=5000, addr_size=8)
Write to the memory of an I2C device:

• data can be an integer or a buffer to write from

• addr is the I2C device address

• memaddr is the memory location within the I2C device

• timeout is the timeout in milliseconds to wait for the write

• addr_size selects width of memaddr: 8 or 16 bits

Returns None. This is only valid in master mode.

I2C.recv(recv, addr=0x00, *, timeout=5000)
Receive data on the bus:

• recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes

94 Chapter 1. MicroPython libraries



MicroPython Documentation, �� 1.11

• addr is the address to receive from (only required in master mode)

• timeout is the timeout in milliseconds to wait for the receive

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

I2C.send(send, addr=0x00, *, timeout=5000)
Send data on the bus:

• send is the data to send (an integer to send, or a buffer object)

• addr is the address to send to (only required in master mode)

• timeout is the timeout in milliseconds to wait for the send

Return value: None.

I2C.scan()
Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond. Only valid when in
master mode.

Constants

I2C.MASTER
for initialising the bus to master mode

I2C.SLAVE
for initialising the bus to slave mode

class LCD – LCD control for the LCD touch-sensor pyskin

The LCD class is used to control the LCD on the LCD touch-sensor pyskin, LCD32MKv1.0. The LCD is a
128x32 pixel monochrome screen, part NHD-C12832A1Z.

The pyskin must be connected in either the X or Y positions, and then an LCD object is made using:

lcd = pyb.LCD('X') # if pyskin is in the X position
lcd = pyb.LCD('Y') # if pyskin is in the Y position

Then you can use:

lcd.light(True) # turn the backlight on
lcd.write('Hello world!\n') # print text to the screen

This driver implements a double buffer for setting/getting pixels. For example, to make a bouncing dot, try:

x = y = 0
dx = dy = 1
while True:

# update the dot's position
x += dx
y += dy

# make the dot bounce of the edges of the screen
if x <= 0 or x >= 127: dx = -dx
if y <= 0 or y >= 31: dy = -dy

(����)
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lcd.fill(0) # clear the buffer
lcd.pixel(x, y, 1) # draw the dot
lcd.show() # show the buffer
pyb.delay(50) # pause for 50ms

Constructors

class pyb.LCD(skin_position)
Construct an LCD object in the given skin position. skin_position can be ‘X’ or ‘Y’, and should
match the position where the LCD pyskin is plugged in.

Methods

LCD.command(instr_data, buf)
Send an arbitrary command to the LCD. Pass 0 for instr_data to send an instruction, otherwise pass
1 to send data. buf is a buffer with the instructions/data to send.

LCD.contrast(value)
Set the contrast of the LCD. Valid values are between 0 and 47.

LCD.fill(colour)
Fill the screen with the given colour (0 or 1 for white or black).

This method writes to the hidden buffer. Use show() to show the buffer.

LCD.get(x, y)
Get the pixel at the position (x, y). Returns 0 or 1.

This method reads from the visible buffer.

LCD.light(value)
Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off.

LCD.pixel(x, y, colour)
Set the pixel at (x, y) to the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

LCD.show()
Show the hidden buffer on the screen.

LCD.text(str, x, y, colour)
Draw the given text to the position (x, y) using the given colour (0 or 1).

This method writes to the hidden buffer. Use show() to show the buffer.

LCD.write(str)
Write the string str to the screen. It will appear immediately.

class LED – LED object

The LED object controls an individual LED (Light Emitting Diode).
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Constructors

class pyb.LED(id)
Create an LED object associated with the given LED:

• id is the LED number, 1-4.

Methods

LED.intensity([value ])
Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). If no argument is
given, return the LED intensity. If an argument is given, set the LED intensity and return None.

Note: Only LED(3) and LED(4) can have a smoothly varying intensity, and they use timer PWM to
implement it. LED(3) uses Timer(2) and LED(4) uses Timer(3). These timers are only configured for
PWM if the intensity of the relevant LED is set to a value between 1 and 254. Otherwise the timers
are free for general purpose use.

LED.off()
Turn the LED off.

LED.on()
Turn the LED on, to maximum intensity.

LED.toggle()
Toggle the LED between on (maximum intensity) and off. If the LED is at non-zero intensity then it
is considered “on” and toggle will turn it off.

class Pin – control I/O pins

A pin is the basic object to control I/O pins. It has methods to set the mode of the pin (input, output, etc)
and methods to get and set the digital logic level. For analog control of a pin, see the ADC class.

Usage Model:

All Board Pins are predefined as pyb.Pin.board.Name:

x1_pin = pyb.Pin.board.X1

g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)

CPU pins which correspond to the board pins are available as pyb.Pin.cpu.Name. For the CPU pins, the
names are the port letter followed by the pin number. On the PYBv1.0, pyb.Pin.board.X1 and pyb.Pin.
cpu.A0 are the same pin.

You can also use strings:

g = pyb.Pin('X1', pyb.Pin.OUT_PP)

Users can add their own names:

MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 }
pyb.Pin.dict(MyMapperDict)
g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)

and can query mappings:
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pin = pyb.Pin("LeftMotorDir")

Users can also add their own mapping function:

def MyMapper(pin_name):
if pin_name == "LeftMotorDir":

return pyb.Pin.cpu.A0

pyb.Pin.mapper(MyMapper)

So, if you were to call: pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP) then "LeftMotorDir" is passed di-
rectly to the mapper function.

To summarise, the following order determines how things get mapped into an ordinal pin number:

1. Directly specify a pin object

2. User supplied mapping function

3. User supplied mapping (object must be usable as a dictionary key)

4. Supply a string which matches a board pin

5. Supply a string which matches a CPU port/pin

You can set pyb.Pin.debug(True) to get some debug information about how a particular object gets mapped
to a pin.

When a pin has the Pin.PULL_UP or Pin.PULL_DOWN pull-mode enabled, that pin has an effective 40k Ohm
resistor pulling it to 3V3 or GND respectively (except pin Y5 which has 11k Ohm resistors).

Now every time a falling edge is seen on the gpio pin, the callback will be executed. Caution: mechanical
push buttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques
for debouncing.

All pin objects go through the pin mapper to come up with one of the gpio pins.

Constructors

class pyb.Pin(id, ...)
Create a new Pin object associated with the id. If additional arguments are given, they are used to
initialise the pin. See pin.init().

Class methods

classmethod Pin.debug([state ])
Get or set the debugging state (True or False for on or off).

classmethod Pin.dict([dict ])
Get or set the pin mapper dictionary.

classmethod Pin.mapper([fun ])
Get or set the pin mapper function.
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Methods

Pin.init(mode, pull=Pin.PULL_NONE, af=-1)
Initialise the pin:

• mode can be one of:

– Pin.IN - configure the pin for input;

– Pin.OUT_PP - configure the pin for output, with push-pull control;

– Pin.OUT_OD - configure the pin for output, with open-drain control;

– Pin.AF_PP - configure the pin for alternate function, pull-pull;

– Pin.AF_OD - configure the pin for alternate function, open-drain;

– Pin.ANALOG - configure the pin for analog.

• pull can be one of:

– Pin.PULL_NONE - no pull up or down resistors;

– Pin.PULL_UP - enable the pull-up resistor;

– Pin.PULL_DOWN - enable the pull-down resistor.

• when mode is Pin.AF_PP or Pin.AF_OD, then af can be the index or name of one of the alternate
functions associated with a pin.

Returns: None.

Pin.value([value ])
Get or set the digital logic level of the pin:

• With no argument, return 0 or 1 depending on the logic level of the pin.

• With value given, set the logic level of the pin. value can be anything that converts to a boolean.
If it converts to True, the pin is set high, otherwise it is set low.

Pin.__str__()
Return a string describing the pin object.

Pin.af()
Returns the currently configured alternate-function of the pin. The integer returned will match one of
the allowed constants for the af argument to the init function.

Pin.af_list()
Returns an array of alternate functions available for this pin.

Pin.gpio()
Returns the base address of the GPIO block associated with this pin.

Pin.mode()
Returns the currently configured mode of the pin. The integer returned will match one of the allowed
constants for the mode argument to the init function.

Pin.name()
Get the pin name.

Pin.names()
Returns the cpu and board names for this pin.

Pin.pin()
Get the pin number.
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Pin.port()
Get the pin port.

Pin.pull()
Returns the currently configured pull of the pin. The integer returned will match one of the allowed
constants for the pull argument to the init function.

Constants

Pin.AF_OD
initialise the pin to alternate-function mode with an open-drain drive

Pin.AF_PP
initialise the pin to alternate-function mode with a push-pull drive

Pin.ANALOG
initialise the pin to analog mode

Pin.IN
initialise the pin to input mode

Pin.OUT_OD
initialise the pin to output mode with an open-drain drive

Pin.OUT_PP
initialise the pin to output mode with a push-pull drive

Pin.PULL_DOWN
enable the pull-down resistor on the pin

Pin.PULL_NONE
don’t enable any pull up or down resistors on the pin

Pin.PULL_UP
enable the pull-up resistor on the pin

class PinAF – Pin Alternate Functions

A Pin represents a physical pin on the microprocessor. Each pin can have a variety of functions (GPIO, I2C
SDA, etc). Each PinAF object represents a particular function for a pin.

Usage Model:

x3 = pyb.Pin.board.X3
x3_af = x3.af_list()

x3_af will now contain an array of PinAF objects which are available on pin X3.

For the pyboard, x3_af would contain: [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9,
Pin.AF7_USART2]

Normally, each peripheral would configure the af automatically, but sometimes the same function is available
on multiple pins, and having more control is desired.

To configure X3 to expose TIM2_CH3, you could use:

pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2)

or:
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pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1)

Methods

pinaf.__str__()
Return a string describing the alternate function.

pinaf.index()
Return the alternate function index.

pinaf.name()
Return the name of the alternate function.

pinaf.reg()
Return the base register associated with the peripheral assigned to this alternate function. For example,
if the alternate function were TIM2_CH3 this would return stm.TIM2

class RTC – real time clock

The RTC is and independent clock that keeps track of the date and time.

Example usage:

rtc = pyb.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

Constructors

class pyb.RTC
Create an RTC object.

Methods

RTC.datetime([datetimetuple ])
Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument
(being an 8-tuple) it sets the date and time (and subseconds is reset to 255).

The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

weekday is 1-7 for Monday through Sunday.

subseconds counts down from 255 to 0

RTC.wakeup(timeout, callback=None)
Set the RTC wakeup timer to trigger repeatedly at every timeout milliseconds. This trigger can wake
the pyboard from both the sleep states: pyb.stop() and pyb.standby().

If timeout is None then the wakeup timer is disabled.
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If callback is given then it is executed at every trigger of the wakeup timer. callback must take
exactly one argument.

RTC.info()
Get information about the startup time and reset source.

• The lower 0xffff are the number of milliseconds the RTC took to start up.

• Bit 0x10000 is set if a power-on reset occurred.

• Bit 0x20000 is set if an external reset occurred

RTC.calibration(cal)
Get or set RTC calibration.

With no arguments, calibration() returns the current calibration value, which is an integer in the
range [-511 : 512]. With one argument it sets the RTC calibration.

The RTC Smooth Calibration mechanism adjusts the RTC clock rate by adding or subtracting the
given number of ticks from the 32768 Hz clock over a 32 second period (corresponding to 2^20 clock
ticks.) Each tick added will speed up the clock by 1 part in 2^20, or 0.954 ppm; likewise the RTC
clock it slowed by negative values. The usable calibration range is: (-511 * 0.954) ~= -487.5 ppm up
to (512 * 0.954) ~= 488.5 ppm

class Servo – 3-wire hobby servo driver

Servo objects control standard hobby servo motors with 3-wires (ground, power, signal). There are 4 positions
on the pyboard where these motors can be plugged in: pins X1 through X4 are the signal pins, and next to
them are 4 sets of power and ground pins.

Example usage:

import pyb

s1 = pyb.Servo(1) # create a servo object on position X1
s2 = pyb.Servo(2) # create a servo object on position X2

s1.angle(45) # move servo 1 to 45 degrees
s2.angle(0) # move servo 2 to 0 degrees

# move servo1 and servo2 synchronously, taking 1500ms
s1.angle(-60, 1500)
s2.angle(30, 1500)

��: The Servo objects use Timer(5) to produce the PWM output. You can use Timer(5) for Servo control,
or your own purposes, but not both at the same time.

Constructors

class pyb.Servo(id)
Create a servo object. id is 1-4, and corresponds to pins X1 through X4.
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Methods

Servo.angle([angle, time=0 ])
If no arguments are given, this function returns the current angle.

If arguments are given, this function sets the angle of the servo:

• angle is the angle to move to in degrees.

• time is the number of milliseconds to take to get to the specified angle. If omitted, then the servo
moves as quickly as possible to its new position.

Servo.speed([speed, time=0 ])
If no arguments are given, this function returns the current speed.

If arguments are given, this function sets the speed of the servo:

• speed is the speed to change to, between -100 and 100.

• time is the number of milliseconds to take to get to the specified speed. If omitted, then the servo
accelerates as quickly as possible.

Servo.pulse_width([value ])
If no arguments are given, this function returns the current raw pulse-width value.

If an argument is given, this function sets the raw pulse-width value.

Servo.calibration([pulse_min, pulse_max, pulse_centre[, pulse_angle_90, pulse_speed_100 ] ])
If no arguments are given, this function returns the current calibration data, as a 5-tuple.

If arguments are given, this function sets the timing calibration:

• pulse_min is the minimum allowed pulse width.

• pulse_max is the maximum allowed pulse width.

• pulse_centre is the pulse width corresponding to the centre/zero position.

• pulse_angle_90 is the pulse width corresponding to 90 degrees.

• pulse_speed_100 is the pulse width corresponding to a speed of 100.

class SPI – a master-driven serial protocol

SPI is a serial protocol that is driven by a master. At the physical level there are 3 lines: SCK, MOSI,
MISO.

See usage model of I2C; SPI is very similar. Main difference is parameters to init the SPI bus:

from pyb import SPI
spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)

Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be 0 or 1, and is the level the
idle clock line sits at. Phase can be 0 or 1 to sample data on the first or second clock edge respectively. Crc
can be None for no CRC, or a polynomial specifier.

Additional methods for SPI:
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data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
buf = bytearray(4)
spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf

Constructors

class pyb.SPI(bus, ...)
Construct an SPI object on the given bus. bus can be 1 or 2, or ‘X’ or ‘Y’. With no additional
parameters, the SPI object is created but not initialised (it has the settings from the last initialisation
of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.

The physical pins of the SPI busses are:

• SPI(1) is on the X position: (NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5,
PA6, PA7)

• SPI(2) is on the Y position: (NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13,
PB14, PB15)

At the moment, the NSS pin is not used by the SPI driver and is free for other use.

Methods

SPI.deinit()
Turn off the SPI bus.

SPI.init(mode, baudrate=328125, *, prescaler, polarity=1, phase=0, bits=8, firstbit=SPI.MSB,
ti=False, crc=None)

Initialise the SPI bus with the given parameters:

• mode must be either SPI.MASTER or SPI.SLAVE.

• baudrate is the SCK clock rate (only sensible for a master).

• prescaler is the prescaler to use to derive SCK from the APB bus frequency; use of prescaler
overrides baudrate.

• polarity can be 0 or 1, and is the level the idle clock line sits at.

• phase can be 0 or 1 to sample data on the first or second clock edge respectively.

• bits can be 8 or 16, and is the number of bits in each transferred word.

• firstbit can be SPI.MSB or SPI.LSB.

• crc can be None for no CRC, or a polynomial specifier.

Note that the SPI clock frequency will not always be the requested baudrate. The hardware only
supports baudrates that are the APB bus frequency (see pyb.freq()) divided by a prescaler, which
can be 2, 4, 8, 16, 32, 64, 128 or 256. SPI(1) is on AHB2, and SPI(2) is on AHB1. For precise control
over the SPI clock frequency, specify prescaler instead of baudrate.

Printing the SPI object will show you the computed baudrate and the chosen prescaler.

SPI.recv(recv, *, timeout=5000)
Receive data on the bus:
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• recv can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.

Return value: if recv is an integer then a new buffer of the bytes received, otherwise the same buffer
that was passed in to recv.

SPI.send(send, *, timeout=5000)
Send data on the bus:

• send is the data to send (an integer to send, or a buffer object).

• timeout is the timeout in milliseconds to wait for the send.

Return value: None.

SPI.send_recv(send, recv=None, *, timeout=5000)
Send and receive data on the bus at the same time:

• send is the data to send (an integer to send, or a buffer object).

• recv is a mutable buffer which will be filled with received bytes. It can be the same as send, or
omitted. If omitted, a new buffer will be created.

• timeout is the timeout in milliseconds to wait for the receive.

Return value: the buffer with the received bytes.

Constants

SPI.MASTER

SPI.SLAVE
for initialising the SPI bus to master or slave mode

SPI.LSB

SPI.MSB
set the first bit to be the least or most significant bit

class Switch – switch object

A Switch object is used to control a push-button switch.

Usage:

sw = pyb.Switch() # create a switch object
sw.value() # get state (True if pressed, False otherwise)
sw() # shorthand notation to get the switch state
sw.callback(f) # register a callback to be called when the

# switch is pressed down
sw.callback(None) # remove the callback

Example:

pyb.Switch().callback(lambda: pyb.LED(1).toggle())
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Constructors

class pyb.Switch
Create and return a switch object.

Methods

Switch.__call__()
Call switch object directly to get its state: True if pressed down, False otherwise.

Switch.value()
Get the switch state. Returns True if pressed down, otherwise False.

Switch.callback(fun)
Register the given function to be called when the switch is pressed down. If fun is None, then it
disables the callback.

class Timer – control internal timers

Timers can be used for a great variety of tasks. At the moment, only the simplest case is implemented: that
of calling a function periodically.

Each timer consists of a counter that counts up at a certain rate. The rate at which it counts is the peripheral
clock frequency (in Hz) divided by the timer prescaler. When the counter reaches the timer period it triggers
an event, and the counter resets back to zero. By using the callback method, the timer event can call a
Python function.

Example usage to toggle an LED at a fixed frequency:

tim = pyb.Timer(4) # create a timer object using timer 4
tim.init(freq=2) # trigger at 2Hz
tim.callback(lambda t:pyb.LED(1).toggle())

Example using named function for the callback:

def tick(timer): # we will receive the timer object when being called
print(timer.counter()) # show current timer's counter value

tim = pyb.Timer(4, freq=1) # create a timer object using timer 4 - trigger at 1Hz
tim.callback(tick) # set the callback to our tick function

Further examples:

tim = pyb.Timer(4, freq=100) # freq in Hz
tim = pyb.Timer(4, prescaler=0, period=99)
tim.counter() # get counter (can also set)
tim.prescaler(2) # set prescaler (can also get)
tim.period(199) # set period (can also get)
tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
tim.callback(None) # clear callback

Note: Timer(2) and Timer(3) are used for PWM to set the intensity of LED(3) and LED(4) respectively.
But these timers are only configured for PWM if the intensity of the relevant LED is set to a value between
1 and 254. If the intensity feature of the LEDs is not used then these timers are free for general purpose use.
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Similarly, Timer(5) controls the servo driver, and Timer(6) is used for timed ADC/DAC reading/writing. It
is recommended to use the other timers in your programs.

Note: Memory can’t be allocated during a callback (an interrupt) and so exceptions raised within a callback
don’t give much information. See micropython.alloc_emergency_exception_buf() for how to get around
this limitation.

Constructors

class pyb.Timer(id, ...)
Construct a new timer object of the given id. If additional arguments are given, then the timer is
initialised by init(...). id can be 1 to 14.

Methods

Timer.init(*, freq, prescaler, period)
Initialise the timer. Initialisation must be either by frequency (in Hz) or by prescaler and period:

tim.init(freq=100) # set the timer to trigger at 100Hz
tim.init(prescaler=83, period=999) # set the prescaler and period directly

Keyword arguments:

• freq — specifies the periodic frequency of the timer. You might also view this as the
frequency with which the timer goes through one complete cycle.

• prescaler [0-0xffff] - specifies the value to be loaded into the timer’s Prescaler Register
(PSC). The timer clock source is divided by (prescaler + 1) to arrive at the timer
clock. Timers 2-7 and 12-14 have a clock source of 84 MHz (pyb.freq()[2] * 2), and
Timers 1, and 8-11 have a clock source of 168 MHz (pyb.freq()[3] * 2).

• period [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. Specifies the
value to be loaded into the timer’s AutoReload Register (ARR). This determines the
period of the timer (i.e. when the counter cycles). The timer counter will roll-over after
period + 1 timer clock cycles.

• mode can be one of:

– Timer.UP - configures the timer to count from 0 to ARR (default)

– Timer.DOWN - configures the timer to count from ARR down to 0.

– Timer.CENTER - configures the timer to count from 0 to ARR and then back down
to 0.

• div can be one of 1, 2, or 4. Divides the timer clock to determine the sampling clock
used by the digital filters.

• callback - as per Timer.callback()

• deadtime - specifies the amount of “dead” or inactive time between transitions on com-
plimentary channels (both channels will be inactive) for this time). deadtime may be an
integer between 0 and 1008, with the following restrictions: 0-128 in steps of 1. 128-256
in steps of 2, 256-512 in steps of 8, and 512-1008 in steps of 16. deadtime measures ticks
of source_freq divided by div clock ticks. deadtime is only available on timers 1 and
8.

You must either specify freq or both of period and prescaler.
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Timer.deinit()
Deinitialises the timer.

Disables the callback (and the associated irq).

Disables any channel callbacks (and the associated irq). Stops the timer, and disables the timer
peripheral.

Timer.callback(fun)
Set the function to be called when the timer triggers. fun is passed 1 argument, the timer object. If
fun is None then the callback will be disabled.

Timer.channel(channel, mode, ...)
If only a channel number is passed, then a previously initialized channel object is returned (or None if
there is no previous channel).

Otherwise, a TimerChannel object is initialized and returned.

Each channel can be configured to perform pwm, output compare, or input capture. All channels share
the same underlying timer, which means that they share the same timer clock.

Keyword arguments:

• mode can be one of:

– Timer.PWM — configure the timer in PWM mode (active high).

– Timer.PWM_INVERTED — configure the timer in PWM mode (active low).

– Timer.OC_TIMING — indicates that no pin is driven.

– Timer.OC_ACTIVE — the pin will be made active when a compare match occurs (active is
determined by polarity)

– Timer.OC_INACTIVE — the pin will be made inactive when a compare match occurs.

– Timer.OC_TOGGLE — the pin will be toggled when an compare match occurs.

– Timer.OC_FORCED_ACTIVE — the pin is forced active (compare match is ignored).

– Timer.OC_FORCED_INACTIVE — the pin is forced inactive (compare match is ignored).

– Timer.IC — configure the timer in Input Capture mode.

– Timer.ENC_A — configure the timer in Encoder mode. The counter only changes when CH1
changes.

– Timer.ENC_B — configure the timer in Encoder mode. The counter only changes when CH2
changes.

– Timer.ENC_AB — configure the timer in Encoder mode. The counter changes when CH1 or
CH2 changes.

• callback - as per TimerChannel.callback()

• pin None (the default) or a Pin object. If specified (and not None) this will cause the alternate
function of the the indicated pin to be configured for this timer channel. An error will be raised
if the pin doesn’t support any alternate functions for this timer channel.

Keyword arguments for Timer.PWM modes:

• pulse_width - determines the initial pulse width value to use.

• pulse_width_percent - determines the initial pulse width percentage to use.

Keyword arguments for Timer.OC modes:
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• compare - determines the initial value of the compare register.

• polarity can be one of:

– Timer.HIGH - output is active high

– Timer.LOW - output is active low

Optional keyword arguments for Timer.IC modes:

• polarity can be one of:

– Timer.RISING - captures on rising edge.

– Timer.FALLING - captures on falling edge.

– Timer.BOTH - captures on both edges.

Note that capture only works on the primary channel, and not on the complimentary chan-
nels.

Notes for Timer.ENC modes:

• Requires 2 pins, so one or both pins will need to be configured to use the appropriate timer AF
using the Pin API.

• Read the encoder value using the timer.counter() method.

• Only works on CH1 and CH2 (and not on CH1N or CH2N)

• The channel number is ignored when setting the encoder mode.

PWM Example:

timer = pyb.Timer(2, freq=1000)
ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=8000)
ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=16000)

Timer.counter([value ])
Get or set the timer counter.

Timer.freq([value ])
Get or set the frequency for the timer (changes prescaler and period if set).

Timer.period([value ])
Get or set the period of the timer.

Timer.prescaler([value ])
Get or set the prescaler for the timer.

Timer.source_freq()
Get the frequency of the source of the timer.

class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.

TimerChannel objects are created using the Timer.channel() method.
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Methods

timerchannel.callback(fun)
Set the function to be called when the timer channel triggers. fun is passed 1 argument, the timer
object. If fun is None then the callback will be disabled.

timerchannel.capture([value ])
Get or set the capture value associated with a channel. capture, compare, and pulse_width are all
aliases for the same function. capture is the logical name to use when the channel is in input capture
mode.

timerchannel.compare([value ])
Get or set the compare value associated with a channel. capture, compare, and pulse_width are all
aliases for the same function. compare is the logical name to use when the channel is in output compare
mode.

timerchannel.pulse_width([value ])
Get or set the pulse width value associated with a channel. capture, compare, and pulse_width are
all aliases for the same function. pulse_width is the logical name to use when the channel is in PWM
mode.

In edge aligned mode, a pulse_width of period + 1 corresponds to a duty cycle of 100% In center
aligned mode, a pulse width of period corresponds to a duty cycle of 100%

timerchannel.pulse_width_percent([value ])
Get or set the pulse width percentage associated with a channel. The value is a number between 0
and 100 and sets the percentage of the timer period for which the pulse is active. The value can be an
integer or floating-point number for more accuracy. For example, a value of 25 gives a duty cycle of
25%.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical
level it consists of 2 lines: RX and TX. The unit of communication is a character (not to be confused with
a string character) which can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from pyb import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Bits can be 7, 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2.

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Individual characters can be read/written using:
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uart.readchar() # read 1 character and returns it as an integer
uart.writechar(42) # write 1 character

To check if there is anything to be read, use:

uart.any() # returns the number of characters waiting

Note: The stream functions read, write, etc. are new in MicroPython v1.3.4. Earlier versions use uart.send
and uart.recv.

Constructors

class pyb.UART(bus, ...)
Construct a UART object on the given bus. bus can be 1-6, or ‘XA’, ‘XB’, ‘YA’, or ‘YB’. With no
additional parameters, the UART object is created but not initialised (it has the settings from the
last initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for
parameters of initialisation.

The physical pins of the UART busses are:

• UART(4) is on XA: (TX, RX) = (X1, X2) = (PA0, PA1)

• UART(1) is on XB: (TX, RX) = (X9, X10) = (PB6, PB7)

• UART(6) is on YA: (TX, RX) = (Y1, Y2) = (PC6, PC7)

• UART(3) is on YB: (TX, RX) = (Y9, Y10) = (PB10, PB11)

• UART(2) is on: (TX, RX) = (X3, X4) = (PA2, PA3)

The Pyboard Lite supports UART(1), UART(2) and UART(6) only. Pins are as above except:

• UART(2) is on: (TX, RX) = (X1, X2) = (PA2, PA3)

Methods

UART.init(baudrate, bits=8, parity=None, stop=1, *, timeout=0, flow=0, timeout_char=0,
read_buf_len=64)

Initialise the UART bus with the given parameters:

• baudrate is the clock rate.

• bits is the number of bits per character, 7, 8 or 9.

• parity is the parity, None, 0 (even) or 1 (odd).

• stop is the number of stop bits, 1 or 2.

• flow sets the flow control type. Can be 0, UART.RTS, UART.CTS or UART.RTS | UART.CTS.

• timeout is the timeout in milliseconds to wait for writing/reading the first character.

• timeout_char is the timeout in milliseconds to wait between characters while writing or reading.

• read_buf_len is the character length of the read buffer (0 to disable).

This method will raise an exception if the baudrate could not be set within 5% of the desired value.
The minimum baudrate is dictated by the frequency of the bus that the UART is on; UART(1) and
UART(6) are APB2, the rest are on APB1. The default bus frequencies give a minimum baudrate of
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1300 for UART(1) and UART(6) and 650 for the others. Use pyb.freq to reduce the bus frequencies
to get lower baudrates.

Note: with parity=None, only 8 and 9 bits are supported. With parity enabled, only 7 and 8 bits are
supported.

UART.deinit()
Turn off the UART bus.

UART.any()
Returns the number of bytes waiting (may be 0).

UART.read([nbytes ])
Read characters. If nbytes is specified then read at most that many bytes. If nbytes are available
in the buffer, returns immediately, otherwise returns when sufficient characters arrive or the timeout
elapses.

If nbytes is not given then the method reads as much data as possible. It returns after the timeout
has elapsed.

Note: for 9 bit characters each character takes two bytes, nbytes must be even, and the number of
characters is nbytes/2.

Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readchar()
Receive a single character on the bus.

Return value: The character read, as an integer. Returns -1 on timeout.

UART.readinto(buf [, nbytes ])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read
at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character. If such a line exists, return is immediate. If the timeout
elapses, all available data is returned regardless of whether a newline exists.

Return value: the line read or None on timeout if no data is available.

UART.write(buf)
Write the buffer of bytes to the bus. If characters are 7 or 8 bits wide then each byte is one character.
If characters are 9 bits wide then two bytes are used for each character (little endian), and buf must
contain an even number of bytes.

Return value: number of bytes written. If a timeout occurs and no bytes were written returns None.

UART.writechar(char)
Write a single character on the bus. char is an integer to write. Return value: None. See note below
if CTS flow control is used.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration of 13 bits. Return value:
None.

Constants

UART.RTS
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UART.CTS
to select the flow control type.

Flow Control

On Pyboards V1 and V1.1 UART(2) and UART(3) support RTS/CTS hardware flow control using the following
pins:

• UART(2) is on: (TX, RX, nRTS, nCTS) = (X3, X4, X2, X1) = (PA2, PA3, PA1, PA0)

• UART(3) is on :(TX, RX, nRTS, nCTS) = (Y9, Y10, Y7, Y6) = (PB10, PB11, PB14, PB13)

On the Pyboard Lite only UART(2) supports flow control on these pins:

(TX, RX, nRTS, nCTS) = (X1, X2, X4, X3) = (PA2, PA3, PA1, PA0)

In the following paragraphs the term “target” refers to the device connected to the UART.

When the UART’s init() method is called with flow set to one or both of UART.RTS and UART.CTS the
relevant flow control pins are configured. nRTS is an active low output, nCTS is an active low input with
pullup enabled. To achieve flow control the Pyboard’s nCTS signal should be connected to the target’s nRTS
and the Pyboard’s nRTS to the target’s nCTS.

CTS: target controls Pyboard transmitter

If CTS flow control is enabled the write behaviour is as follows:

If the Pyboard’s UART.write(buf) method is called, transmission will stall for any periods when nCTS is
False. This will result in a timeout if the entire buffer was not transmitted in the timeout period. The
method returns the number of bytes written, enabling the user to write the remainder of the data if required.
In the event of a timeout, a character will remain in the UART pending nCTS. The number of bytes composing
this character will be included in the return value.

If UART.writechar() is called when nCTS is False the method will time out unless the target asserts nCTS
in time. If it times out OSError 116 will be raised. The character will be transmitted as soon as the target
asserts nCTS.

RTS: Pyboard controls target’s transmitter

If RTS flow control is enabled, behaviour is as follows:

If buffered input is used (read_buf_len > 0), incoming characters are buffered. If the buffer becomes full,
the next character to arrive will cause nRTS to go False: the target should cease transmission. nRTS will go
True when characters are read from the buffer.

Note that the any() method returns the number of bytes in the buffer. Assume a buffer length of N bytes.
If the buffer becomes full, and another character arrives, nRTS will be set False, and any() will return the
count N. When characters are read the additional character will be placed in the buffer and will be included
in the result of a subsequent any() call.

If buffered input is not used (read_buf_len == 0) the arrival of a character will cause nRTS to go False
until the character is read.
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class USB_HID – USB Human Interface Device (HID)

The USB_HID class allows creation of an object representing the USB Human Interface Device (HID)
interface. It can be used to emulate a peripheral such as a mouse or keyboard.

Before you can use this class, you need to use pyb.usb_mode() to set the USB mode to include the HID
interface.

Constructors

class pyb.USB_HID
Create a new USB_HID object.

Methods

USB_HID.recv(data, *, timeout=5000)
Receive data on the bus:

• data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.

Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of
bytes read into data is returned.

USB_HID.send(data)
Send data over the USB HID interface:

• data is the data to send (a tuple/list of integers, or a bytearray).

class USB_VCP – USB virtual comm port

The USB_VCP class allows creation of a stream-like object representing the USB virtual comm port. It
can be used to read and write data over USB to the connected host.

Constructors

class pyb.USB_VCP
Create a new USB_VCP object.

Methods

USB_VCP.setinterrupt(chr)
Set the character which interrupts running Python code. This is set to 3 (CTRL-C) by default, and
when a CTRL-C character is received over the USB VCP port, a KeyboardInterrupt exception is raised.

Set to -1 to disable this interrupt feature. This is useful when you want to send raw bytes over the
USB VCP port.

USB_VCP.isconnected()
Return True if USB is connected as a serial device, else False.
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USB_VCP.any()
Return True if any characters waiting, else False.

USB_VCP.close()
This method does nothing. It exists so the USB_VCP object can act as a file.

USB_VCP.read([nbytes ])
Read at most nbytes from the serial device and return them as a bytes object. If nbytes is not specified
then the method reads all available bytes from the serial device. USB_VCP stream implicitly works
in non-blocking mode, so if no pending data available, this method will return immediately with None
value.

USB_VCP.readinto(buf [, maxlen ])
Read bytes from the serial device and store them into buf, which should be a buffer-like object. At
most len(buf) bytes are read. If maxlen is given and then at most min(maxlen, len(buf)) bytes
are read.

Returns the number of bytes read and stored into buf or None if no pending data available.

USB_VCP.readline()
Read a whole line from the serial device.

Returns a bytes object containing the data, including the trailing newline character or None if no
pending data available.

USB_VCP.readlines()
Read as much data as possible from the serial device, breaking it into lines.

Returns a list of bytes objects, each object being one of the lines. Each line will include the newline
character.

USB_VCP.write(buf)
Write the bytes from buf to the serial device.

Returns the number of bytes written.

USB_VCP.recv(data, *, timeout=5000)
Receive data on the bus:

• data can be an integer, which is the number of bytes to receive, or a mutable buffer, which will
be filled with received bytes.

• timeout is the timeout in milliseconds to wait for the receive.

Return value: if data is an integer then a new buffer of the bytes received, otherwise the number of
bytes read into data is returned.

USB_VCP.send(data, *, timeout=5000)
Send data over the USB VCP:

• data is the data to send (an integer to send, or a buffer object).

• timeout is the timeout in milliseconds to wait for the send.

Return value: number of bytes sent.

1.3.2 lcd160cr — control of LCD160CR display

This module provides control of the MicroPython LCD160CR display.
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Further resources are available via the following links:

• LCD160CRv1.0 reference manual (100KiB PDF)

• LCD160CRv1.0 schematics (1.6MiB PDF)

class LCD160CR

The LCD160CR class provides an interface to the display. Create an instance of this class and use its
methods to draw to the LCD and get the status of the touch panel.

For example:

import lcd160cr

lcd = lcd160cr.LCD160CR('X')
lcd.set_orient(lcd160cr.PORTRAIT)
lcd.set_pos(0, 0)
lcd.set_text_color(lcd.rgb(255, 0, 0), lcd.rgb(0, 0, 0))
lcd.set_font(1)

(����)
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(���)

lcd.write('Hello MicroPython!')
print('touch:', lcd.get_touch())

Constructors

class lcd160cr.LCD160CR(connect=None, *, pwr=None, i2c=None, spi=None, i2c_addr=98)
Construct an LCD160CR object. The parameters are:

• connect is a string specifying the physical connection of the LCD display to the board; valid values
are “X”, “Y”, “XY”, “YX”. Use “X” when the display is connected to a pyboard in the X-skin
position, and “Y” when connected in the Y-skin position. “XY” and “YX” are used when the
display is connected to the right or left side of the pyboard, respectively.

• pwr is a Pin object connected to the LCD’s power/enabled pin.

• i2c is an I2C object connected to the LCD’s I2C interface.

• spi is an SPI object connected to the LCD’s SPI interface.

• i2c_addr is the I2C address of the display.

One must specify either a valid connect or all of pwr, i2c and spi. If a valid connect is given then any
of pwr, i2c or spi which are not passed as parameters (i.e. they are None) will be created based on the
value of connect. This allows to override the default interface to the display if needed.

The default values are:

• “X” is for the X-skin and uses: pwr=Pin("X4"), i2c=I2C("X"), spi=SPI("X")

• “Y” is for the Y-skin and uses: pwr=Pin("Y4"), i2c=I2C("Y"), spi=SPI("Y")

• “XY” is for the right-side and uses: pwr=Pin("X4"), i2c=I2C("Y"), spi=SPI("X")

• “YX” is for the left-side and uses: pwr=Pin("Y4"), i2c=I2C("X"), spi=SPI("Y")

See this image for how the display can be connected to the pyboard.

Static methods

static LCD160CR.rgb(r, g, b)
Return a 16-bit integer representing the given rgb color values. The 16-bit value can be used to
set the font color (see LCD160CR.set_text_color()) pen color (see LCD160CR.set_pen()) and draw
individual pixels.

LCD160CR.clip_line(data, w, h):
Clip the given line data. This is for internal use.

Instance members

The following instance members are publicly accessible.

LCD160CR.w

LCD160CR.h
The width and height of the display, respectively, in pixels. These members are updated when calling
LCD160CR.set_orient() and should be considered read-only.
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Setup commands

LCD160CR.set_power(on)
Turn the display on or off, depending on the given value of on: 0 or False will turn the display off,
and 1 or True will turn it on.

LCD160CR.set_orient(orient)
Set the orientation of the display. The orient parameter can be one of PORTRAIT , LANDSCAPE ,
PORTRAIT_UPSIDEDOWN , LANDSCAPE_UPSIDEDOWN .

LCD160CR.set_brightness(value)
Set the brightness of the display, between 0 and 31.

LCD160CR.set_i2c_addr(addr)
Set the I2C address of the display. The addr value must have the lower 2 bits cleared.

LCD160CR.set_uart_baudrate(baudrate)
Set the baudrate of the UART interface.

LCD160CR.set_startup_deco(value)
Set the start-up decoration of the display. The value parameter can be a logical or of
STARTUP_DECO_NONE , STARTUP_DECO_MLOGO, STARTUP_DECO_INFO.

LCD160CR.save_to_flash()
Save the following parameters to flash so they persist on restart and power up: initial decoration,
orientation, brightness, UART baud rate, I2C address.

Pixel access methods

The following methods manipulate individual pixels on the display.

LCD160CR.set_pixel(x, y, c)
Set the specified pixel to the given color. The color should be a 16-bit integer and can be created by
LCD160CR.rgb().

LCD160CR.get_pixel(x, y)
Get the 16-bit value of the specified pixel.

LCD160CR.get_line(x, y, buf)
Low-level method to get a line of pixels into the given buffer. To read n pixels buf should be 2*n+1
bytes in length. The first byte is a dummy byte and should be ignored, and subsequent bytes represent
the pixels in the line starting at coordinate (x, y).

LCD160CR.screen_dump(buf, x=0, y=0, w=None, h=None)
Dump the contents of the screen to the given buffer. The parameters x and y specify the starting
coordinate, and w and h the size of the region. If w or h are None then they will take on their
maximum values, set by the size of the screen minus the given x and y values. buf should be large
enough to hold 2*w*h bytes. If it’s smaller then only the initial horizontal lines will be stored.

LCD160CR.screen_load(buf)
Load the entire screen from the given buffer.

Drawing text

To draw text one sets the position, color and font, and then uses LCD160CR.write to draw the text.

LCD160CR.set_pos(x, y)
Set the position for text output using LCD160CR.write(). The position is the upper-left corner of the
text.
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LCD160CR.set_text_color(fg, bg)
Set the foreground and background color of the text.

LCD160CR.set_font(font, scale=0, bold=0, trans=0, scroll=0)
Set the font for the text. Subsequent calls to write will use the newly configured font. The parameters
are:

• font is the font family to use, valid values are 0, 1, 2, 3.

• scale is a scaling value for each character pixel, where the pixels are drawn as a square with side
length equal to scale + 1. The value can be between 0 and 63.

• bold controls the number of pixels to overdraw each character pixel, making a bold effect. The
lower 2 bits of bold are the number of pixels to overdraw in the horizontal direction, and the next
2 bits are for the vertical direction. For example, a bold value of 5 will overdraw 1 pixel in both
the horizontal and vertical directions.

• trans can be either 0 or 1 and if set to 1 the characters will be drawn with a transparent back-
ground.

• scroll can be either 0 or 1 and if set to 1 the display will do a soft scroll if the text moves to the
next line.

LCD160CR.write(s)
Write text to the display, using the current position, color and font. As text is written the position
is automatically incremented. The display supports basic VT100 control codes such as newline and
backspace.

Drawing primitive shapes

Primitive drawing commands use a foreground and background color set by the set_pen method.

LCD160CR.set_pen(line, fill)
Set the line and fill color for primitive shapes.

LCD160CR.erase()
Erase the entire display to the pen fill color.

LCD160CR.dot(x, y)
Draw a single pixel at the given location using the pen line color.

LCD160CR.rect(x, y, w, h)

LCD160CR.rect_outline(x, y, w, h)

LCD160CR.rect_interior(x, y, w, h)
Draw a rectangle at the given location and size using the pen line color for the outline, and the pen fill
color for the interior. The rect method draws the outline and interior, while the other methods just
draw one or the other.

LCD160CR.line(x1, y1, x2, y2)
Draw a line between the given coordinates using the pen line color.

LCD160CR.dot_no_clip(x, y)

LCD160CR.rect_no_clip(x, y, w, h)

LCD160CR.rect_outline_no_clip(x, y, w, h)

LCD160CR.rect_interior_no_clip(x, y, w, h)

1.3. Libraries specific to the pyboard 119



MicroPython Documentation, �� 1.11

LCD160CR.line_no_clip(x1, y1, x2, y2)
These methods are as above but don’t do any clipping on the input coordinates. They are faster than
the clipping versions and can be used when you know that the coordinates are within the display.

LCD160CR.poly_dot(data)
Draw a sequence of dots using the pen line color. The data should be a buffer of bytes, with each
successive pair of bytes corresponding to coordinate pairs (x, y).

LCD160CR.poly_line(data)
Similar to LCD160CR.poly_dot() but draws lines between the dots.

Touch screen methods

LCD160CR.touch_config(calib=False, save=False, irq=None)
Configure the touch panel:

• If calib is True then the call will trigger a touch calibration of the resistive touch sensor. This
requires the user to touch various parts of the screen.

• If save is True then the touch parameters will be saved to NVRAM to persist across reset/power
up.

• If irq is True then the display will be configured to pull the IRQ line low when a touch force is
detected. If irq is False then this feature is disabled. If irq is None (the default value) then no
change is made to this setting.

LCD160CR.is_touched()
Returns a boolean: True if there is currently a touch force on the screen, False otherwise.

LCD160CR.get_touch()
Returns a 3-tuple of: (active, x, y). If there is currently a touch force on the screen then active is 1,
otherwise it is 0. The x and y values indicate the position of the current or most recent touch.

Advanced commands

LCD160CR.set_spi_win(x, y, w, h)
Set the window that SPI data is written to.

LCD160CR.fast_spi(flush=True)
Ready the display to accept RGB pixel data on the SPI bus, resetting the location of the first byte to
go to the top-left corner of the window set by LCD160CR.set_spi_win(). The method returns an SPI
object which can be used to write the pixel data.

Pixels should be sent as 16-bit RGB values in the 5-6-5 format. The destination counter will increase
as data is sent, and data can be sent in arbitrary sized chunks. Once the destination counter reaches
the end of the window specified by LCD160CR.set_spi_win() it will wrap around to the top-left corner
of that window.

LCD160CR.show_framebuf(buf)
Show the given buffer on the display. buf should be an array of bytes containing the 16-bit RGB values
for the pixels, and they will be written to the area specified by LCD160CR.set_spi_win(), starting
from the top-left corner.

The framebuf module can be used to construct frame buffers and provides drawing primitives. Using a
frame buffer will improve performance of animations when compared to drawing directly to the screen.

LCD160CR.set_scroll(on)
Turn scrolling on or off. This controls globally whether any window regions will scroll.
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LCD160CR.set_scroll_win(win, x=-1, y=0, w=0, h=0, vec=0, pat=0, fill=0x07e0, color=0)
Configure a window region for scrolling:

• win is the window id to configure. There are 0..7 standard windows for general purpose use.
Window 8 is the text scroll window (the ticker).

• x, y, w, h specify the location of the window in the display.

• vec specifies the direction and speed of scroll: it is a 16-bit value of the form 0bF.ddSSSSSSSSSSSS.
dd is 0, 1, 2, 3 for +x, +y, -x, -y scrolling. F sets the speed format, with 0 meaning that the
window is shifted S % 256 pixel every frame, and 1 meaning that the window is shifted 1 pixel
every S frames.

• pat is a 16-bit pattern mask for the background.

• fill is the fill color.

• color is the extra color, either of the text or pattern foreground.

LCD160CR.set_scroll_win_param(win, param, value)
Set a single parameter of a scrolling window region:

• win is the window id, 0..8.

• param is the parameter number to configure, 0..7, and corresponds to the parameters in the
set_scroll_win method.

• value is the value to set.

LCD160CR.set_scroll_buf(s)
Set the string for scrolling in window 8. The parameter s must be a string with length 32 or less.

LCD160CR.jpeg(buf)
Display a JPEG. buf should contain the entire JPEG data. JPEG data should not include EXIF
information. The following encodings are supported: Baseline DCT, Huffman coding, 8 bits per
sample, 3 color components, YCbCr4:2:2. The origin of the JPEG is set by LCD160CR.set_pos().

LCD160CR.jpeg_start(total_len)

LCD160CR.jpeg_data(buf)
Display a JPEG with the data split across multiple buffers. There must be a single call to jpeg_start
to begin with, specifying the total number of bytes in the JPEG. Then this number of bytes must be
transferred to the display using one or more calls to the jpeg_data command.

LCD160CR.feed_wdt()
The first call to this method will start the display’s internal watchdog timer. Subsequent calls will feed
the watchdog. The timeout is roughly 30 seconds.

LCD160CR.reset()
Reset the display.

Constants

lcd160cr.PORTRAIT
lcd160cr.LANDSCAPE
lcd160cr.PORTRAIT_UPSIDEDOWN
lcd160cr.LANDSCAPE_UPSIDEDOWN

Orientations of the display, used by LCD160CR.set_orient().

lcd160cr.STARTUP_DECO_NONE
lcd160cr.STARTUP_DECO_MLOGO
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lcd160cr.STARTUP_DECO_INFO
Types of start-up decoration, can be OR’ed together, used by LCD160CR.set_startup_deco().

1.4 Libraries specific to the WiPy

The following libraries and classes are specific to the WiPy.

1.4.1 wipy – WiPy specific features

The wipy module contains functions to control specific features of the WiPy, such as the heartbeat LED.

Functions

wipy.heartbeat([enable ])
Get or set the state (enabled or disabled) of the heartbeat LED. Accepts and returns boolean values
(True or False).

1.4.2 class TimerWiPy – control hardware timers

��: This class is a non-standard Timer implementation for the WiPy. It is available simply as machine.
Timer on the WiPy but is named in the documentation below as machine.TimerWiPy to distinguish it from
the more general machine.Timer class.

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and hetero-
geneous kind of hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s
Timer class defines a baseline operation of executing a callback with a given period (or once after some
delay), and allow specific boards to define more non-standard behavior (which thus won’t be portable to
other boards).

See discussion of important constraints on Timer callbacks.

��: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler
don’t give much information. See micropython.alloc_emergency_exception_buf() for how to get around
this limitation.

Constructors

class machine.TimerWiPy(id, ...)
Construct a new timer object of the given id. Id of -1 constructs a virtual timer (if supported by a
board).

Methods

TimerWiPy.init(mode, *, width=16)
Initialise the timer. Example:

122 Chapter 1. MicroPython libraries



MicroPython Documentation, �� 1.11

tim.init(Timer.PERIODIC) # periodic 16-bit timer
tim.init(Timer.ONE_SHOT, width=32) # one shot 32-bit timer

Keyword arguments:

• mode can be one of:

– TimerWiPy.ONE_SHOT - The timer runs once until the configured period of the channel expires.

– TimerWiPy.PERIODIC - The timer runs periodically at the configured frequency of the channel.

– TimerWiPy.PWM - Output a PWM signal on a pin.

• width must be either 16 or 32 (bits). For really low frequencies < 5Hz (or large periods), 32-bit
timers should be used. 32-bit mode is only available for ONE_SHOT AND PERIODIC modes.

TimerWiPy.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

TimerWiPy.channel(channel, **, freq, period, polarity=TimerWiPy.POSITIVE, duty_cycle=0)
If only a channel identifier passed, then a previously initialized channel object is returned (or None if
there is no previous channel).

Otherwise, a TimerChannel object is initialized and returned.

The operating mode is is the one configured to the Timer object that was used to create the channel.

• channel if the width of the timer is 16-bit, then must be either TIMER.A, TIMER.B. If the width
is 32-bit then it must be TIMER.A | TIMER.B.

Keyword only arguments:

• freq sets the frequency in Hz.

• period sets the period in microseconds.

��: Either freq or period must be given, never both.

• polarity this is applicable for PWM, and defines the polarity of the duty cycle

• duty_cycle only applicable to PWM. It’s a percentage (0.00-100.00). Since the WiPy
doesn’t support floating point numbers the duty cycle must be specified in the range
0-10000, where 10000 would represent 100.00, 5050 represents 50.50, and so on.

��: When the channel is in PWM mode, the corresponding pin is assigned automatically, therefore
there’s no need to assign the alternate function of the pin via the Pin class. The pins which support
PWM functionality are the following:

• GP24 on Timer 0 channel A.

• GP25 on Timer 1 channel A.

• GP9 on Timer 2 channel B.

• GP10 on Timer 3 channel A.

• GP11 on Timer 3 channel B.
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1.4.3 class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.

TimerChannel objects are created using the Timer.channel() method.

Methods

timerchannel.irq(*, trigger, priority=1, handler=None)
The behavior of this callback is heavily dependent on the operating mode of the timer channel:

• If mode is TimerWiPy.PERIODIC the callback is executed periodically with the configured fre-
quency or period.

• If mode is TimerWiPy.ONE_SHOT the callback is executed once when the configured timer expires.

• If mode is TimerWiPy.PWM the callback is executed when reaching the duty cycle value.

The accepted params are:

• priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher
priorities.

• handler is an optional function to be called when the interrupt is triggered.

• trigger must be TimerWiPy.TIMEOUT when the operating mode is either TimerWiPy.PERIODIC
or TimerWiPy.ONE_SHOT. In the case that mode is TimerWiPy.PWM then trigger must be equal to
TimerWiPy.MATCH.

Returns a callback object.

timerchannel.freq([value ])
Get or set the timer channel frequency (in Hz).

timerchannel.period([value ])
Get or set the timer channel period (in microseconds).

timerchannel.duty_cycle([value ])
Get or set the duty cycle of the PWM signal. It’s a percentage (0.00-100.00). Since the WiPy doesn’t
support floating point numbers the duty cycle must be specified in the range 0-10000, where 10000
would represent 100.00, 5050 represents 50.50, and so on.

Constants

TimerWiPy.ONE_SHOT

TimerWiPy.PERIODIC
Timer operating mode.

1.5 Libraries specific to the ESP8266 and ESP32

The following libraries are specific to the ESP8266 and ESP32.
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1.5.1 esp — functions related to the ESP8266 and ESP32

The espmodule contains specific functions related to both the ESP8266 and ESP32 modules. Some functions
are only available on one or the other of these ports.

Functions

esp.sleep_type([sleep_type ])
Note: ESP8266 only

Get or set the sleep type.

If the sleep_type parameter is provided, sets the sleep type to its value. If the function is called without
parameters, returns the current sleep type.

The possible sleep types are defined as constants:

• SLEEP_NONE – all functions enabled,

• SLEEP_MODEM – modem sleep, shuts down the WiFi Modem circuit.

• SLEEP_LIGHT – light sleep, shuts down the WiFi Modem circuit and suspends the processor
periodically.

The system enters the set sleep mode automatically when possible.

esp.deepsleep(time=0)
Note: ESP8266 only - use machine.deepsleep() on ESP32

Enter deep sleep.

The whole module powers down, except for the RTC clock circuit, which can be used to restart the
module after the specified time if the pin 16 is connected to the reset pin. Otherwise the module will
sleep until manually reset.

esp.flash_id()
Note: ESP8266 only

Read the device ID of the flash memory.

esp.flash_size()
Read the total size of the flash memory.

esp.flash_user_start()
Read the memory offset at which the user flash space begins.

esp.flash_read(byte_offset, length_or_buffer)

esp.flash_write(byte_offset, bytes)

esp.flash_erase(sector_no)

esp.set_native_code_location(start, length)
Note: ESP8266 only

Set the location that native code will be placed for execution after it is compiled. Native code is emitted
when the @micropython.native, @micropython.viper and @micropython.asm_xtensa decorators
are applied to a function. The ESP8266 must execute code from either iRAM or the lower 1MByte of
flash (which is memory mapped), and this function controls the location.

If start and length are both None then the native code location is set to the unused portion of memory at
the end of the iRAM1 region. The size of this unused portion depends on the firmware and is typically
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quite small (around 500 bytes), and is enough to store a few very small functions. The advantage of
using this iRAM1 region is that it does not get worn out by writing to it.

If neither start nor length are None then they should be integers. start should specify the byte offset
from the beginning of the flash at which native code should be stored. length specifies how many bytes
of flash from start can be used to store native code. start and length should be multiples of the sector
size (being 4096 bytes). The flash will be automatically erased before writing to it so be sure to use a
region of flash that is not otherwise used, for example by the firmware or the filesystem.

When using the flash to store native code start+length must be less than or equal to 1MByte. Note
that the flash can be worn out if repeated erasures (and writes) are made so use this feature sparingly.
In particular, native code needs to be recompiled and rewritten to flash on each boot (including wake
from deepsleep).

In both cases above, using iRAM1 or flash, if there is no more room left in the specified region then
the use of a native decorator on a function will lead to MemoryError exception being raised during
compilation of that function.

1.5.2 esp32 — functionality specific to the ESP32

The esp32 module contains functions and classes specifically aimed at controlling ESP32 modules.

Functions

esp32.wake_on_touch(wake)
Configure whether or not a touch will wake the device from sleep. wake should be a boolean value.

esp32.wake_on_ext0(pin, level)
Configure how EXT0 wakes the device from sleep. pin can be None or a valid Pin object. level should
be esp32.WAKEUP_ALL_LOW or esp32.WAKEUP_ANY_HIGH.

esp32.wake_on_ext1(pins, level)
Configure how EXT1 wakes the device from sleep. pins can be None or a tuple/list of valid Pin objects.
level should be esp32.WAKEUP_ALL_LOW or esp32.WAKEUP_ANY_HIGH.

esp32.raw_temperature()
Read the raw value of the internal temperature sensor, returning an integer.

esp32.hall_sensor()
Read the raw value of the internal Hall sensor, returning an integer.

The Ultra-Low-Power co-processor

class esp32.ULP
This class provides access to the Ultra-Low-Power co-processor.

ULP.set_wakeup_period(period_index, period_us)
Set the wake-up period.

ULP.load_binary(load_addr, program_binary)
Load a program_binary into the ULP at the given load_addr.

ULP.run(entry_point)
Start the ULP running at the given entry_point.
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Constants

esp32.WAKEUP_ALL_LOW
esp32.WAKEUP_ANY_HIGH

Selects the wake level for pins.
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CHAPTER 2

The MicroPython language

MicroPython aims to implement the Python 3.4 standard (with selected features from later versions) with
respect to language syntax, and most of the features of MicroPython are identical to those described by the
“Language Reference” documentation at docs.python.org.

The MicroPython standard library is described in the corresponding chapter. The cpython_diffs chapter
describes differences between MicroPython and CPython (which mostly concern standard library and types,
but also some language-level features).

This chapter describes features and peculiarities of MicroPython implementation and the best practices to
use them.

2.1 Glossary

baremetal A system without a (full-fledged) OS, for example an MCU -based system. When running on
a baremetal system, MicroPython effectively becomes its user-facing OS with a command interpreter
(REPL).

board A PCB board. Oftentimes, the term is used to denote a particular model of an MCU system.
Sometimes, it is used to actually refer to MicroPython port to a particular board (and then may also
refer to “boardless” ports like Unix port).

callee-owned tuple A tuple returned by some builtin function/method, containing data which is valid for
a limited time, usually until next call to the same function (or a group of related functions). After
next call, data in the tuple may be changed. This leads to the following restriction on the usage
of callee-owned tuples - references to them cannot be stored. The only valid operation is extracting
values from them (including making a copy). Callee-owned tuples is a MicroPython-specific construct
(not available in the general Python language), introduced for memory allocation optimization. The
idea is that callee-owned tuple is allocated once and stored on the callee side. Subsequent calls don’t
require allocation, allowing to return multiple values when allocation is not possible (e.g. in interrupt
context) or not desirable (because allocation inherently leads to memory fragmentation). Note that
callee-owned tuples are effectively mutable tuples, making an exception to Python’s rule that tuples are
immutable. (It may be interesting why tuples were used for such a purpose then, instead of mutable
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lists - the reason for that is that lists are mutable from user application side too, so a user could do
things to a callee-owned list which the callee doesn’t expect and could lead to problems; a tuple is
protected from this.)

CPython CPython is the reference implementation of Python programming language, and the most well-
known one, which most of the people run. It is however one of many implementations (among which
Jython, IronPython, PyPy, and many more, including MicroPython). As there is no formal speci-
fication of the Python language, only CPython documentation, it is not always easy to draw a line
between Python the language and CPython its particular implementation. This however leaves more
freedom for other implementations. For example, MicroPython does a lot of things differently than
CPython, while still aspiring to be a Python language implementation.

GPIO General-purpose input/output. The simplest means to control electrical signals. With GPIO, user
can configure hardware signal pin to be either input or output, and set or get its digital signal value
(logical “0” or “1”). MicroPython abstracts GPIO access using machine.Pin and machine.Signal
classes.

GPIO port A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable
by the same register).

interned string A string referenced by its (unique) identity rather than its address. Interned strings
are thus can be quickly compared just by their identifiers, instead of comparing by content. The
drawbacks of interned strings are that interning operation takes time (proportional to the number
of existing interned strings, i.e. becoming slower and slower over time) and that the space used for
interned strings is not reclaimable. String interning is done automatically by MicroPython compiler
and runtimer when it’s either required by the implementation (e.g. function keyword arguments are
represented by interned string id’s) or deemed beneficial (e.g. for short enough strings, which have a
chance to be repeated, and thus interning them would save memory on copies). Most of string and
I/O operations don’t produce interned strings due to drawbacks described above.

MCU Microcontroller. Microcontrollers usually have much less resources than a full-fledged computing
system, but smaller, cheaper and require much less power. MicroPython is designed to be small and
optimized enough to run on an average modern microcontroller.

micropython-lib MicroPython is (usually) distributed as a single executable/binary file with just few
builtin modules. There is no extensive standard library comparable with CPython. Instead, there is a
related, but separate project micropython-lib which provides implementations for many modules from
CPython’s standard library. However, large subset of these modules require POSIX-like environment
(Linux, FreeBSD, MacOS, etc.; Windows may be partially supported), and thus would work or make
sense only with MicroPython Unix port. Some subset of modules is however usable for baremetal
ports too.

Unlike monolithic CPython stdlib, micropython-lib modules are intended to be installed individually -
either using manual copying or using upip.

MicroPython port MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily
adapted to new systems. MicroPython with support for a particular system is called a “port” to that
system. Different ports may have widely different functionality. This documentation is intended to be
a reference of the generic APIs available across different ports (“MicroPython core”). Note that some
ports may still omit some APIs described here (e.g. due to resource constraints). Any such differences,
and port-specific extensions beyond MicroPython core functionality, would be described in the separate
port-specific documentation.

MicroPython Unix port Unix port is one of the major MicroPython ports. It is intended to run on
POSIX-compatible operating systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the
basis of Windows port. The importance of Unix port lies in the fact that while there are many different
boards, so two random users unlikely have the same board, almost all modern OSes have some level
of POSIX compatibility, so Unix port serves as a kind of “common ground” to which any user can
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have access. So, Unix port is used for initial prototyping, different kinds of testing, development of
machine-independent features, etc. All users of MicroPython, even those which are interested only
in running MicroPython on MCU systems, are recommended to be familiar with Unix (or Windows)
port, as it is important productivity helper and a part of normal MicroPython workflow.

port Either MicroPython port or GPIO port. If not clear from context, it’s recommended to use full
specification like one of the above.

stream Also known as a “file-like object”. An object which provides sequential read-write access to the
underlying data. A stream object implements a corresponding interface, which consists of methods
like read(), write(), readinto(), seek(), flush(), close(), etc. A stream is an important concept
in MicroPython, many I/O objects implement the stream interface, and thus can be used consistently
and interchangeably in different contexts. For more information on streams in MicroPython, see uio
module.

upip (Literally, “micro pip”). A package manage for MicroPython, inspired by CPython’s pip, but much
smaller and with reduced functionality. upip runs both on Unix port and on baremetal ports (those
which offer filesystem and networking support).

2.2 The MicroPython Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive Interpreter Mode. A commonly used
term for this is REPL (read-eval-print-loop) which will be used to refer to this interactive prompt.

2.2.1 Auto-indent

When typing python statements which end in a colon (for example if, for, while) then the prompt will change
to three dots (…) and the cursor will be indented by 4 spaces. When you press return, the next line will
continue at the same level of indentation for regular statements or an additional level of indentation where
appropriate. If you press the backspace key then it will undo one level of indentation.

If your cursor is all the way back at the beginning, pressing RETURN will then execute the code that you’ve
entered. The following shows what you’d see after entering a for statement (the underscore shows where the
cursor winds up):

>>> for i in range(30):
... _

If you then enter an if statement, an additional level of indentation will be provided:

>>> for i in range(30):
... if i > 3:
... _

Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
... if i > 3:
... break
... _

Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:
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>>> for i in range(30):
... if i > 3:
... break
... print(i)
...
0
1
2
3
>>>

Auto-indent won’t be applied if the previous two lines were all spaces. This means that you can finish
entering a compound statement by pressing RETURN twice, and then a third press will finish and execute.

2.2.2 Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to the beginning of the name
of something, then pressing TAB will show possible things that could be entered. For example, first import
the machine module by entering import machine and pressing RETURN. Then type m and press TAB and
it should expand to machine. Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__ info unique_id reset
bootloader freq rng idle
sleep deepsleep disable_irq enable_irq
Pin

The word will be expanded as much as possible until multiple possibilities exist. For example, type machine.
Pin.AF3 and press TAB and it will expand to machine.Pin.AF3_TIM. Pressing TAB a second time will show
the possible expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10 AF3_TIM11 AF3_TIM8 AF3_TIM9
>>> machine.Pin.AF3_TIM

2.2.3 Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt which will
bring you back to the REPL, providing your program doesn’t intercept the KeyboardInterrupt exception.

For example:

>>> for i in range(1000000):
... print(i)
...
0
1
2
3
...
6466

(����)
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6467
6468
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt:
>>>

2.2.4 Paste Mode

If you want to paste some code into your terminal window, the auto-indent feature will mess things up. For
example, if you had the following python code:

def foo():
print('This is a test to show paste mode')
print('Here is a second line')

foo()

and you try to paste this into the normal REPL, then you will see something like this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...
File "<stdin>", line 3

IndentationError: unexpected indent

If you press Ctrl-E, then you will enter paste mode, which essentially turns off the auto-indent feature, and
changes the prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

Paste Mode allows blank lines to be pasted. The pasted text is compiled as if it were a file. Pressing Ctrl-D
exits paste mode and initiates the compilation.

2.2.5 Soft Reset

A soft reset will reset the python interpreter, but tries not to reset the method by which you’re connected
to the MicroPython board (USB-serial, or Wifi).

You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python code by executing:
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machine.soft_reset()

For example, if you reset your MicroPython board, and you execute a dir() command, you’d see something
like this:

>>> dir()
['__name__', 'pyb']

Now create some variables and repeat the dir() command:

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your variables no longer exist:

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

2.2.6 The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results. MicroPython stores the results
of the previous statement in the variable _ (underscore). So you can use the underscore to save the result
in a variable. For example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>

2.2.7 Raw Mode

Raw mode is not something that a person would normally use. It is intended for programmatic use. It
essentially behaves like paste mode with echo turned off.

Raw mode is entered using Ctrl-A. You then send your python code, followed by a Ctrl-D. The Ctrl-D will
be acknowledged by ‘OK’ and then the python code will be compiled and executed. Any output (or errors)
will be sent back. Entering Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.

The tools/pyboard.py program uses the raw REPL to execute python files on the MicroPython board.
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2.3 Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt han-
dlers - also known as interrupt service routines (ISR’s) - are defined as callback functions. These are executed
in response to an event such as a timer trigger or a voltage change on a pin. Such events can occur at any
point in the execution of the program code. This carries significant consequences, some specific to the Mi-
croPython language. Others are common to all systems capable of responding to real time events. This
document covers the language specific issues first, followed by a brief introduction to real time programming
for those new to it.

This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are
application dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts
occur, the nature of the main program, and the presence of other concurrent events.

2.3.1 Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler
code.

• Keep the code as short and simple as possible.

• Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.

• Consider using micropython.schedule to work around the above constraint.

• Where an ISR returns multiple bytes use a pre-allocated bytearray. If multiple integers are to be
shared between an ISR and the main program consider an array (array.array).

• Where data is shared between the main program and an ISR, consider disabling interrupts prior to
accessing the data in the main program and re-enabling them immediately afterwards (see Critical
Sections).

• Allocate an emergency exception buffer (see below).

2.3.2 MicroPython Issues

The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is
created for the purpose. Debugging is simplified if the following code is included in any program using
interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)

Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only
what has to be done immediately after the event which caused it: operations which can be deferred should
be delegated to the main program loop. Typically an ISR will deal with the hardware device which caused
the interrupt, making it ready for the next interrupt to occur. It will communicate with the main loop by
updating shared data to indicate that the interrupt has occurred, and it will return. An ISR should return
control to the main loop as quickly as possible. This is not a specific MicroPython issue so is covered in
more detail below.
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Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one
or more shared data objects, either declared as global or shared via a class (see below). There are various
restrictions and hazards around doing this, which are covered in more detail below. Integers, bytes and
bytearray objects are commonly used for this purpose along with arrays (from the array module) which
can store various data types.

The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the
underlying code. It also enables a class implementing a device driver to support multiple device instances.
The following example causes two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):

def __init__(self, timer, led):
self.led = led
timer.callback(self.cb)

def cb(self, tim):
self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
green = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))

In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb()
is called causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt results in
the execution of green.cb() and toggles LED 2. The use of instance methods confers two benefits. Firstly
a single class enables code to be shared between multiple hardware instances. Secondly, as a bound method
the callback function’s first argument is self. This enables the callback to access instance data and to
save state between successive calls. For example, if the class above had a variable self.count set to zero
in the constructor, cb() could increment the counter. The red and green instances would then maintain
independent counts of the number of times each LED had changed state.

Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for
the object from a store of free memory block called the heap. This is not permitted in an interrupt handler
because heap allocation is not re-entrant. In other words the interrupt might occur when the main program
is part way through performing an allocation - to maintain the integrity of the heap the interpreter disallows
memory allocations in ISR code.

A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python
objects. Similarly an ISR can’t append an item to a list. In practice it can be hard to determine exactly
which code constructs will attempt to perform memory allocation and provoke an error message: another
reason for keeping ISR code short and simple.

One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor
creates a bytearray instance and a boolean flag. The ISR method assigns data to locations in the buffer
and sets the flag. The memory allocation occurs in the main program code when the object is instantiated
rather than in the ISR.
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The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For example
pyb.i2c.recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.

A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
buf[0] = 0xa5
buf[1] = t >> 4
buf[2] = 0x5a
return buf

The compiler instantiates the default buf argument when the function is loaded for the first time (usually
when the module it’s in is imported).

An instance of object creation occurs when a reference to a bound method is created. This means that an
ISR cannot pass a bound method to a function. One solution is to create a reference to the bound method
in the class constructor and to pass that reference in the ISR. For example:

class Foo():
def __init__(self):

self.bar_ref = self.bar # Allocation occurs here
self.x = 0.1
tim = pyb.Timer(4)
tim.init(freq=2)
tim.callback(self.cb)

def bar(self, _):
self.x *= 1.2
print(self.x)

def cb(self, t):
# Passing self.bar would cause allocation.
micropython.schedule(self.bar_ref, 0)

Other techniques are to define and instantiate the method in the constructor or to pass Foo.bar() with the
argument self.

Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is
executed the Python code is compiled to bytecode, with one line of code typically mapping to multiple
bytecodes. When the code runs the interpreter reads each bytecode and executes it as a series of machine
code instructions. Given that an interrupt can occur at any time between machine code instructions, the
original line of Python code may be only partially executed. Consequently a Python object such as a set, list
or dictionary modified in the main loop may lack internal consistency at the moment the interrupt occurs.

A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the
object is partially updated. When the ISR tries to read the object, a crash results. Because such problems
typically occur on rare, random occasions they can be hard to diagnose. There are ways to circumvent this
issue, described in Critical Sections below.

It is important to be clear about what constitutes the modification of an object. An alteration to a built-in
type such as a dictionary is problematic. Altering the contents of an array or bytearray is not. This is
because bytes or words are written as a single machine code instruction which is not interruptible: in the
parlance of real time programming the write is atomic. A user defined object might instantiate an integer,
array or bytearray. It is valid for both the main loop and the ISR to alter the contents of these.
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MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in
a single machine word. Larger values are stored as Python objects. Consequently changes to long integers
cannot be considered atomic. The use of long integers in ISR’s is unsafe because memory allocation may be
attempted as the variable’s value changes.

Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and
conversion to floats is normally done in the main loop. However there are a few DSP algorithms which
require floating point. On platforms with hardware floating point (such as the Pyboard) the inline ARM
Thumb assembler can be used to work round this limitation. This is because the processor stores float values
in a machine word; values can be shared between the ISR and main program code via an array of floats.

Using micropython.schedule

This function enables an ISR to schedule a callback for execution “very soon”. The callback is queued for
execution which will take place at a time when the heap is not locked. Hence it can create Python objects
and use floats. The callback is also guaranteed to run at a time when the main program has completed any
update of Python objects, so the callback will not encounter partially updated objects.

Typical usage is to handle sensor hardware. The ISR acquires data from the hardware and enables it to
issue a further interrupt. It then schedules a callback to process the data.

Scheduled callbacks should comply with the principles of interrupt handler design outlined below. This is to
avoid problems resulting from I/O activity and the modification of shared data which can arise in any code
which pre-empts the main program loop.

Execution time needs to be considered in relation to the frequency with which interrupts can occur. If an
interrupt occurs while the previous callback is executing, a further instance of the callback will be queued
for execution; this will run after the current instance has completed. A sustained high interrupt repetition
rate therefore carries a risk of unconstrained queue growth and eventual failure with a RuntimeError.

If the callback to be passed to schedule() is a bound method, consider the note in “Creation of Python
objects”.

2.3.3 Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless
the exception is handled by the ISR code.

2.3.4 General Issues

This is merely a brief introduction to the subject of real time programming. Beginners should note that
design errors in real time programs can lead to faults which are particularly hard to diagnose. This is because
they can occur rarely and at intervals which are essentially random. It is crucial to get the initial design
right and to anticipate issues before they arise. Both interrupt handlers and the main program need to be
designed with an appreciation of the following issues.

Interrupt Handler Design

As mentioned above, ISR’s should be designed to be as simple as possible. They should always return in a
short, predictable period of time. This is important because when the ISR is running, the main loop is not:
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inevitably the main loop experiences pauses in its execution at random points in the code. Such pauses can
be a source of hard to diagnose bugs particularly if their duration is long or variable. In order to understand
the implications of ISR run time, a basic grasp of interrupt priorities is required.

Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher
priority interrupt. This has implications if the two interrupts share data (see Critical Sections below). If
such an interrupt occurs it interposes a delay into the ISR code. If a lower priority interrupt occurs while
the ISR is running, it will be delayed until the ISR is complete: if the delay is too long, the lower priority
interrupt may fail. A further issue with slow ISR’s is the case where a second interrupt of the same type
occurs during its execution. The second interrupt will be handled on termination of the first. However if the
rate of incoming interrupts consistently exceeds the capacity of the ISR to service them the outcome will
not be a happy one.

Consequently looping constructs should be avoided or minimised. I/O to devices other than to the inter-
rupting device should normally be avoided: I/O such as disk access, print statements and UART access is
relatively slow, and its duration may vary. A further issue here is that filesystem functions are not reentrant:
using filesystem I/O in an ISR and the main program would be hazardous. Crucially ISR code should not
wait on an event. I/O is acceptable if the code can be guaranteed to return in a predictable period, for
example toggling a pin or LED. Accessing the interrupting device via I2C or SPI may be necessary but the
time taken for such accesses should be calculated or measured and its impact on the application assessed.

There is usually a need to share data between the ISR and the main loop. This may be done either through
global variables or via class or instance variables. Variables are typically integer or boolean types, or integer
or byte arrays (a pre-allocated integer array offers faster access than a list). Where multiple values are
modified by the ISR it is necessary to consider the case where the interrupt occurs at a time when the main
program has accessed some, but not all, of the values. This can lead to inconsistencies.

Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes
received to an integer representing total bytes ready for processing. The main program reads the number of
bytes, processes the bytes, then clears down the number of bytes ready. This will work until an interrupt
occurs just after the main program has read the number of bytes. The ISR puts the added data into the
buffer and updates the number received, but the main program has already read the number, so processes
the data originally received. The newly arrived bytes are lost.

There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible
to use a structure with inherent thread safety other ways are described below.

Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more
ISR’s or between multiple ISR’s. The issue here is that the function may itself be interrupted and a further
instance of that function run. If this is to occur, the function must be designed to be reentrant. How this is
done is an advanced topic beyond the scope of this tutorial.

Critical Sections

An example of a critical section of code is one which accesses more than one variable which can be affected
by an ISR. If the interrupt happens to occur between accesses to the individual variables, their values will
be inconsistent. This is an instance of a hazard known as a race condition: the ISR and the main program
loop race to alter the variables. To avoid inconsistency a means must be employed to ensure that the ISR
does not alter the values for the duration of the critical section. One way to achieve this is to issue pyb.
disable_irq() before the start of the section, and pyb.enable_irq() at the end. Here is an example of
this approach:
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import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
global data, index
for x in range(5):

data[index] = pyb.rng() # simulate input
index += 1
if index >= ARRAYSIZE:

raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)

for loop in range(1000):
if index > 0:

irq_state = pyb.disable_irq() # Start of critical section
for x in range(index):

print(data[x])
index = 0
pyb.enable_irq(irq_state) # End of critical section
print('loop {}'.format(loop))

pyb.delay(1)

tim4.callback(None)

A critical section can comprise a single line of code and a single variable. Consider the following code
fragment.

count = 0
def cb(): # An interrupt callback

count +=1
def main():

# Code to set up the interrupt callback omitted
while True:

count += 1

This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race
condition hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the
main loop MicroPython reads the value of t.counter, adds 1 to it, and writes it back. On rare occasions
the interrupt occurs after the read and before the write. The interrupt modifies t.counter but its change is
overwritten by the main loop when the ISR returns. In a real system this could lead to rare, unpredictable
failures.

As mentioned above, care should be taken if an instance of a Python built in type is modified in the main
code and that instance is accessed in an ISR. The code performing the modification should be regarded as
a critical section to ensure that the instance is in a valid state when the ISR runs.

Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that
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the higher priority interrupt may occur when the lower priority one has partially updated the shared data.
Dealing with this situation is an advanced topic beyond the scope of this introduction other than to note
that mutex objects described below can sometimes be used.

Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but
it disables all interrupts rather than merely the one with the potential to cause problems. It is generally
undesirable to disable an interrupt for long. In the case of timer interrupts it introduces variability to the
time when a callback occurs. In the case of device interrupts, it can lead to the device being serviced too
late with possible loss of data or overrun errors in the device hardware. Like ISR’s, a critical section in the
main code should have a short, predictable duration.

An approach to dealing with critical sections which radically reduces the time for which interrupts are
disabled is to use an object termed a mutex (name derived from the notion of mutual exclusion). The main
program locks the mutex before running the critical section and unlocks it at the end. The ISR tests whether
the mutex is locked. If it is, it avoids the critical section and returns. The design challenge is defining what
the ISR should do in the event that access to the critical variables is denied. A simple example of a mutex
may be found here. Note that the mutex code does disable interrupts, but only for the duration of eight
machine instructions: the benefit of this approach is that other interrupts are virtually unaffected.

Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run after a program terminates.
This may produce unexpected results where you might have expected the object raising the callback to have
gone out of scope. For example on the Pyboard:

def bar():
foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()

This continues to run until the timer is explicitly disabled or the board is reset with ctrl D.

2.4 Maximising MicroPython Speed
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• Maximising MicroPython Speed

– Designing for speed

∗ Algorithms

∗ RAM Allocation

∗ Buffers

∗ Floating Point

∗ Arrays

– Identifying the slowest section of code

– MicroPython code improvements

∗ The const() declaration
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∗ Controlling garbage collection

– The Native code emitter

– The Viper code emitter

– Accessing hardware directly

This tutorial describes ways of improving the performance of MicroPython code. Optimisations involving
other languages are covered elsewhere, namely the use of modules written in C and the MicroPython inline
assembler.

The process of developing high performance code comprises the following stages which should be performed
in the order listed.

• Design for speed.

• Code and debug.

Optimisation steps:

• Identify the slowest section of code.

• Improve the efficiency of the Python code.

• Use the native code emitter.

• Use the viper code emitter.

• Use hardware-specific optimisations.

2.4.1 Designing for speed

Performance issues should be considered at the outset. This involves taking a view on the sections of
code which are most performance critical and devoting particular attention to their design. The process of
optimisation begins when the code has been tested: if the design is correct at the outset optimisation will
be straightforward and may actually be unnecessary.

Algorithms

The most important aspect of designing any routine for performance is ensuring that the best algorithm is
employed. This is a topic for textbooks rather than for a MicroPython guide but spectacular performance
gains can sometimes be achieved by adopting algorithms known for their efficiency.

RAM Allocation

To design efficient MicroPython code it is necessary to have an understanding of the way the interpreter
allocates RAM. When an object is created or grows in size (for example where an item is appended to a list)
the necessary RAM is allocated from a block known as the heap. This takes a significant amount of time;
further it will on occasion trigger a process known as garbage collection which can take several milliseconds.

Consequently the performance of a function or method can be improved if an object is created once only
and not permitted to grow in size. This implies that the object persists for the duration of its use: typically
it will be instantiated in a class constructor and used in various methods.

This is covered in further detail Controlling garbage collection below.
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Buffers

An example of the above is the common case where a buffer is required, such as one used for communication
with a device. A typical driver will create the buffer in the constructor and use it in its I/O methods which
will be called repeatedly.

The MicroPython libraries typically provide support for pre-allocated buffers. For example, objects which
support stream interface (e.g., file or UART) provide read() method which allocates new buffer for read
data, but also a readinto() method to read data into an existing buffer.

Floating Point

Some MicroPython ports allocate floating point numbers on heap. Some other ports may lack dedicated
floating-point coprocessor, and perform arithmetic operations on them in “software” at considerably lower
speed than on integers. Where performance is important, use integer operations and restrict the use of
floating point to sections of the code where performance is not paramount. For example, capture ADC
readings as integers values to an array in one quick go, and only then convert them to floating-point numbers
for signal processing.

Arrays

Consider the use of the various types of array classes as an alternative to lists. The array module supports
various element types with 8-bit elements supported by Python’s built in bytes and bytearray classes.
These data structures all store elements in contiguous memory locations. Once again to avoid memory
allocation in critical code these should be pre-allocated and passed as arguments or as bound objects.

When passing slices of objects such as bytearray instances, Python creates a copy which involves allocation
of the size proportional to the size of slice. This can be alleviated using a memoryview object. memoryview
itself is allocated on heap, but is a small, fixed-size object, regardless of the size of slice it points too.

ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed

A memoryview can only be applied to objects supporting the buffer protocol - this includes arrays but not
lists. Small caveat is that while memoryview object is live, it also keeps alive the original buffer object. So, a
memoryview isn’t a universal panacea. For instance, in the example above, if you are done with 10K buffer
and just need those bytes 30:2000 from it, it may be better to make a slice, and let the 10K buffer go (be
ready for garbage collection), instead of making a long-living memoryview and keeping 10K blocked for GC.

Nonetheless, memoryview is indispensable for advanced preallocated buffer management. readinto()
method discussed above puts data at the beginning of buffer and fills in entire buffer. What if you need to
put data in the middle of existing buffer? Just create a memoryview into the needed section of buffer and
pass it to readinto().

2.4.2 Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and (for standard Python) supported by
various software tools. For the type of smaller embedded application likely to be running on MicroPython
platforms the slowest function or method can usually be established by judicious use of the timing ticks
group of functions documented in utime. Code execution time can be measured in ms, us, or CPU cycles.

The following enables any function or method to be timed by adding an @timed_function decorator:
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def timed_function(f, *args, **kwargs):
myname = str(f).split(' ')[1]
def new_func(*args, **kwargs):

t = utime.ticks_us()
result = f(*args, **kwargs)
delta = utime.ticks_diff(utime.ticks_us(), t)
print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
return result

return new_func

2.4.3 MicroPython code improvements

The const() declaration

MicroPython provides a const() declaration. This works in a similar way to #define in C in that when
the code is compiled to bytecode the compiler substitutes the numeric value for the identifier. This avoids a
dictionary lookup at runtime. The argument to const() may be anything which, at compile time, evaluates
to an integer e.g. 0x100 or 1 << 8.

Caching object references

Where a function or method repeatedly accesses objects performance is improved by caching the object in a
local variable:

class foo(object):
def __init__(self):

ba = bytearray(100)
def bar(self, obj_display):

ba_ref = self.ba
fb = obj_display.framebuffer
# iterative code using these two objects

This avoids the need repeatedly to look up self.ba and obj_display.framebuffer in the body of the
method bar().

Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately sized block on the heap.
This may fail, usually because the heap is cluttered with objects which are no longer referenced by code.
If a failure occurs, the process known as garbage collection reclaims the memory used by these redundant
objects and the allocation is then tried again - a process which can take several milliseconds.

There may be benefits in pre-empting this by periodically issuing gc.collect(). Firstly doing a collection
before it is actually required is quicker - typically on the order of 1ms if done frequently. Secondly you can
determine the point in code where this time is used rather than have a longer delay occur at random points,
possibly in a speed critical section. Finally performing collections regularly can reduce fragmentation in the
heap. Severe fragmentation can lead to non-recoverable allocation failures.
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2.4.4 The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than bytecode. It covers the bulk
of the MicroPython functionality, so most functions will require no adaptation (but see below). It is invoked
by means of a function decorator:

@micropython.native
def foo(self, arg):

buf = self.linebuf # Cached object
# code

There are certain limitations in the current implementation of the native code emitter.

• Context managers are not supported (the with statement).

• Generators are not supported.

• If raise is used an argument must be supplied.

The trade-off for the improved performance (roughly twices as fast as bytecode) is an increase in compiled
code size.

2.4.5 The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The Viper code emitter is not
fully compliant. It supports special Viper native data types in pursuit of performance. Integer processing is
non-compliant because it uses machine words: arithmetic on 32 bit hardware is performed modulo 2**32.

Like the Native emitter Viper produces machine instructions but further optimisations are performed, sub-
stantially increasing performance especially for integer arithmetic and bit manipulations. It is invoked using
a decorator:

@micropython.viper
def foo(self, arg: int) -> int:

# code

As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser.
Type hints provide information on the data types of arguments and of the return value; these are a standard
Python language feature formally defined here PEP0484. Viper supports its own set of types namely int,
uint (unsigned integer), ptr, ptr8, ptr16 and ptr32. The ptrX types are discussed below. Currently the
uint type serves a single purpose: as a type hint for a function return value. If such a function returns
0xffffffff Python will interpret the result as 2**32 -1 rather than as -1.

In addition to the restrictions imposed by the native emitter the following constraints apply:

• Functions may have up to four arguments.

• Default argument values are not permitted.

• Floating point may be used but is not optimised.

Viper provides pointer types to assist the optimiser. These comprise

• ptr Pointer to an object.

• ptr8 Points to a byte.

• ptr16 Points to a 16 bit half-word.

• ptr32 Points to a 32 bit machine word.
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The concept of a pointer may be unfamiliar to Python programmers. It has similarities to a Python
memoryview object in that it provides direct access to data stored in memory. Items are accessed using
subscript notation, but slices are not supported: a pointer can return a single item only. Its purpose is to
provide fast random access to data stored in contiguous memory locations - such as data stored in objects
which support the buffer protocol, and memory-mapped peripheral registers in a microcontroller. It should
be noted that programming using pointers is hazardous: bounds checking is not performed and the compiler
does nothing to prevent buffer overrun errors.

Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:

buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
for x in range(20, 30):

bar = buf[x] # Access a data item through the pointer
# code omitted

In this instance the compiler “knows” that buf is the address of an array of bytes; it can emit code to
rapidly compute the address of buf[x] at runtime. Where casts are used to convert objects to Viper native
types these should be performed at the start of the function rather than in critical timing loops as the cast
operation can take several microseconds. The rules for casting are as follows:

• Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.

• The result of a cast will be a native Viper variable.

• Arguments to a cast can be a Python object or a native Viper variable.

• If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime) that just
changes the type (e.g. from uint to ptr8) so that you can then store/load using this pointer.

• If the argument is a Python object and the cast is int or uint, then the Python object must be of
integral type and the value of that integral object is returned.

• The argument to a bool cast must be integral type (boolean or integer); when used as a return type
the viper function will return True or False objects.

• If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32, then the Python object
must either have the buffer protocol with read-write capabilities (in which case a pointer to the start
of the buffer is returned) or it must be of integral type (in which case the value of that integral object
is returned).

The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):

odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
for _ in range(n):

odr[0] ^= BIT0

A detailed technical description of the three code emitters may be found on Kickstarter here Note 1 and
here Note 2

2.4.6 Accessing hardware directly
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��: Code examples in this section are given for the Pyboard. The techniques described however may be
applied to other MicroPython ports too.

This comes into the category of more advanced programming and involves some knowledge of the target
MCU. Consider the example of toggling an output pin on the Pyboard. The standard approach would be
to write

mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin

This involves the overhead of two calls to the Pin instance’s value() method. This overhead can be
eliminated by performing a read/write to the relevant bit of the chip’s GPIO port output data register (odr).
To facilitate this the stm module provides a set of constants providing the addresses of the relevant registers.
A fast toggle of pin P4 (CPU pin A14) - corresponding to the green LED - can be performed as follows:

import machine
import stm

BIT14 = const(1 << 14)
machine.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14

2.5 MicroPython on Microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These have hardware limitations which
may be unfamiliar to programmers more familiar with conventional computers. In particular the amount
of RAM and nonvolatile “disk” (flash memory) storage is limited. This tutorial offers ways to make the
most of the limited resources. Because MicroPython runs on controllers based on a variety of architectures,
the methods presented are generic: in some cases it will be necessary to obtain detailed information from
platform specific documentation.

2.5.1 Flash Memory

On the Pyboard the simple way to address the limited capacity is to fit a micro SD card. In some cases
this is impractical, either because the device does not have an SD card slot or for reasons of cost or power
consumption; hence the on-chip flash must be used. The firmware including the MicroPython subsystem is
stored in the onboard flash. The remaining capacity is available for use. For reasons connected with the
physical architecture of the flash memory part of this capacity may be inaccessible as a filesystem. In such
cases this space may be employed by incorporating user modules into a firmware build which is then flashed
to the device.

There are two ways to achieve this: frozen modules and frozen bytecode. Frozen modules store the Python
source with the firmware. Frozen bytecode uses the cross compiler to convert the source to bytecode which
is then stored with the firmware. In either case the module may be accessed with an import statement:

import mymodule

The procedure for producing frozen modules and bytecode is platform dependent; instructions for building
the firmware can be found in the README files in the relevant part of the source tree.

In general terms the steps are as follows:

• Clone the MicroPython repository.
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• Acquire the (platform specific) toolchain to build the firmware.

• Build the cross compiler.

• Place the modules to be frozen in a specified directory (dependent on whether the module is to be
frozen as source or as bytecode).

• Build the firmware. A specific command may be required to build frozen code of either type - see the
platform documentation.

• Flash the firmware to the device.

2.5.2 RAM

When reducing RAM usage there are two phases to consider: compilation and execution. In addition to
memory consumption, there is also an issue known as heap fragmentation. In general terms it is best to
minimise the repeated creation and destruction of objects. The reason for this is covered in the section
covering the heap.

Compilation Phase

When a module is imported, MicroPython compiles the code to bytecode which is then executed by the
MicroPython virtual machine (VM). The bytecode is stored in RAM. The compiler itself requires RAM, but
this becomes available for use when the compilation has completed.

If a number of modules have already been imported the situation can arise where there is insufficient RAM
to run the compiler. In this case the import statement will produce a memory exception.

If a module instantiates global objects on import it will consume RAM at the time of import, which is then
unavailable for the compiler to use on subsequent imports. In general it is best to avoid code which runs
on import; a better approach is to have initialisation code which is run by the application after all modules
have been imported. This maximises the RAM available to the compiler.

If RAM is still insufficient to compile all modules one solution is to precompile modules. MicroPython
has a cross compiler capable of compiling Python modules to bytecode (see the README in the mpy-
cross directory). The resulting bytecode file has a .mpy extension; it may be copied to the filesystem and
imported in the usual way. Alternatively some or all modules may be implemented as frozen bytecode: on
most platforms this saves even more RAM as the bytecode is run directly from flash rather than being stored
in RAM.

Execution Phase

There are a number of coding techniques for reducing RAM usage.

Constants

MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

In both instances where the constant is assigned to a variable the compiler will avoid coding a lookup to the
name of the constant by substituting its literal value. This saves bytecode and hence RAM. However the
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ROWS value will occupy at least two machine words, one each for the key and value in the globals dictionary.
The presence in the dictionary is necessary because another module might import or use it. This RAM can
be saved by prepending the name with an underscore as in _COLS: this symbol is not visible outside the
module so will not occupy RAM.

The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100 or 1
<< 8. It can even include other const symbols that have already been defined, e.g. 1 << BIT.

Constant data structures

Where there is a substantial volume of constant data and the platform supports execution from Flash, RAM
may be saved as follows. The data should be located in Python modules and frozen as bytecode. The data
must be defined as bytes objects. The compiler ‘knows’ that bytes objects are immutable and ensures that
the objects remain in flash memory rather than being copied to RAM. The ustruct module can assist in
converting between bytes types and other Python built-in types.

When considering the implications of frozen bytecode, note that in Python strings, floats, bytes, integers
and complex numbers are immutable. Accordingly these will be frozen into flash. Thus, in the line

mystring = "The quick brown fox"

the actual string “The quick brown fox” will reside in flash. At runtime a reference to the string is assigned
to the variable mystring. The reference occupies a single machine word. In principle a long integer could
be used to store constant data:

bar = 0xDEADBEEF0000DEADBEEF

As in the string example, at runtime a reference to the arbitrarily large integer is assigned to the variable
bar. That reference occupies a single machine word.

It might be expected that tuples of integers could be employed for the purpose of storing constant data with
minimal RAM use. With the current compiler this is ineffective (the code works, but RAM is not saved).

foo = (1, 2, 3, 4, 5, 6, 100000)

At runtime the tuple will be located in RAM. This may be subject to future improvement.

Needless object creation

There are a number of situations where objects may unwittingly be created and destroyed. This can reduce
the usability of RAM through fragmentation. The following sections discuss instances of this.

String concatenation

Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""

Each produces the same outcome, however the first needlessly creates two string objects at runtime, allocates
more RAM for concatenation before producing the third. The others perform the concatenation at compile
time which is more efficient, reducing fragmentation.

Where strings must be dynamically created before being fed to a stream such as a file it will save RAM if
this is done in a piecemeal fashion. Rather than creating a large string object, create a substring and feed
it to the stream before dealing with the next.
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The best way to create dynamic strings is by means of the string format() method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)

Buffers

When accessing devices such as instances of UART, I2C and SPI interfaces, using pre-allocated buffers avoids
the creation of needless objects. Consider these two loops:

while True:
var = spi.read(100)
# process data

buf = bytearray(100)
while True:

spi.readinto(buf)
# process data in buf

The first creates a buffer on each pass whereas the second re-uses a pre-allocated buffer; this is both faster
and more efficient in terms of memory fragmentation.

Bytes are smaller than ints

On most platforms an integer consumes four bytes. Consider the two calls to the function foo():

def foo(bar):
for x in bar:

print(x)
foo((1, 2, 0xff))
foo(b'\1\2\xff')

In the first call a tuple of integers is created in RAM. The second efficiently creates a bytes object consuming
the minimum amount of RAM. If the module were frozen as bytecode, the bytes object would reside in flash.

Strings Versus Bytes

Python3 introduced Unicode support. This introduced a distinction between a string and an array of bytes.
MicroPython ensures that Unicode strings take no additional space so long as all characters in the string
are ASCII (i.e. have a value < 126). If values in the full 8-bit range are required bytes and bytearray
objects can be used to ensure that no additional space will be required. Note that most string methods (e.g.
str.strip()) apply also to bytes instances so the process of eliminating Unicode can be painless.

s = 'the quick brown fox' # A string instance
b = b'the quick brown fox' # A bytes instance

Where it is necessary to convert between strings and bytes the str.encode() and the bytes.decode()
methods can be used. Note that both strings and bytes are immutable. Any operation which takes as input
such an object and produces another implies at least one RAM allocation to produce the result. In the
second line below a new bytes object is allocated. This would also occur if foo were a string.

foo = b' empty whitespace'
foo = foo.lstrip()

Runtime compiler execution

The Python funcitons eval and exec invoke the compiler at runtime, which requires significant amounts of
RAM. Note that the pickle library from micropython-lib employs exec. It may be more RAM efficient
to use the ujson library for object serialisation.
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Storing strings in flash

Python strings are immutable hence have the potential to be stored in read only memory. The compiler can
place in flash strings defined in Python code. As with frozen modules it is necessary to have a copy of the
source tree on the PC and the toolchain to build the firmware. The procedure will work even if the modules
have not been fully debugged, so long as they can be imported and run.

After importing the modules, execute:

micropython.qstr_info(1)

Then copy and paste all the Q(xxx) lines into a text editor. Check for and remove lines which are obviously
invalid. Open the file qstrdefsport.h which will be found in ports/stm32 (or the equivalent directory for the
architecture in use). Copy and paste the corrected lines at the end of the file. Save the file, rebuild and flash
the firmware. The outcome can be checked by importing the modules and again issuing:

micropython.qstr_info(1)

The Q(xxx) lines should be gone.

2.5.3 The Heap

When a running program instantiates an object the necessary RAM is allocated from a fixed size pool
known as the heap. When the object goes out of scope (in other words becomes inaccessible to code)
the redundant object is known as “garbage”. A process known as “garbage collection” (GC) reclaims that
memory, returning it to the free heap. This process runs automatically, however it can be invoked directly
by issuing gc.collect().

The discourse on this is somewhat involved. For a ‘quick fix’ issue the following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

Fragmentation

Say a program creates an object foo, then an object bar. Subsequently foo goes out of scope but bar
remains. The RAM used by foo will be reclaimed by GC. However if bar was allocated to a higher address,
the RAM reclaimed from foo will only be of use for objects no bigger than foo. In a complex or long running
program the heap can become fragmented: despite there being a substantial amount of RAM available, there
is insufficient contiguous space to allocate a particular object, and the program fails with a memory error.

The techniques outlined above aim to minimise this. Where large permanent buffers or other objects are
required it is best to instantiate these early in the process of program execution before fragmentation can
occur. Further improvements may be made by monitoring the state of the heap and by controlling GC; these
are outlined below.

Reporting

A number of library functions are available to report on memory allocation and to control GC. These are to
be found in the gc and micropython modules. The following example may be pasted at the REPL (ctrl e
to enter paste mode, ctrl d to run it).
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import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():

a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)

Methods employed above:

• gc.collect() Force a garbage collection. See footnote.

• micropython.mem_info() Print a summary of RAM utilisation.

• gc.mem_free() Return the free heap size in bytes.

• gc.mem_alloc() Return the number of bytes currently allocated.

• micropython.mem_info(1) Print a table of heap utilisation (detailed below).

The numbers produced are dependent on the platform, but it can be seen that declaring the function uses
a small amount of RAM in the form of bytecode emitted by the compiler (the RAM used by the compiler
has been reclaimed). Running the function uses over 10KiB, but on return a is garbage because it is out of
scope and cannot be referenced. The final gc.collect() recovers that memory.

The final output produced by micropython.mem_info(1) will vary in detail but may be interpreted as
follows:

Symbol Meaning
. free block
h head block
= tail block
m marked head block
T tuple
L list
D dict
F float
B byte code
M module

Each letter represents a single block of memory, a block being 16 bytes. So each line of the heap dump
represents 0x400 bytes or 1KiB of RAM.
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Control of Garbage Collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous to do this at intervals,
firstly to pre-empt fragmentation and secondly for performance. A GC can take several milliseconds but is
quicker when there is little work to do (about 1ms on the Pyboard). An explicit call can minimise that delay
while ensuring it occurs at points in the program when it is acceptable.

Automatic GC is provoked under the following circumstances. When an attempt at allocation fails, a GC
is performed and the allocation re-tried. Only if this fails is an exception raised. Secondly an automatic
GC will be triggered if the amount of free RAM falls below a threshold. This threshold can be adapted as
execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

This will provoke a GC when more than 25% of the currently free heap becomes occupied.

In general modules should instantiate data objects at runtime using constructors or other initialisation
functions. The reason is that if this occurs on initialisation the compiler may be starved of RAM when
subsequent modules are imported. If modules do instantiate data on import then gc.collect() issued after
the import will ameliorate the problem.

2.5.4 String Operations

MicroPython handles strings in an efficient manner and understanding this can help in designing applications
to run on microcontrollers. When a module is compiled, strings which occur multiple times are stored once
only, a process known as string interning. In MicroPython an interned string is known as a qstr. In a
module imported normally that single instance will be located in RAM, but as described above, in modules
frozen as bytecode it will be located in flash.

String comparisons are also performed efficiently using hashing rather than character by character. The
penalty for using strings rather than integers may hence be small both in terms of performance and RAM
usage - a fact which may come as a surprise to C programmers.

2.5.5 Postscript

MicroPython passes, returns and (by default) copies objects by reference. A reference occupies a single
machine word so these processes are efficient in RAM usage and speed.

Where variables are required whose size is neither a byte nor a machine word there are standard libraries
which can assist in storing these efficiently and in performing conversions. See the array, ustruct and
uctypes modules.

Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer which signifies the number
of distinct memory regions that were reclaimed in the collection (more precisely, the number of heads that
were turned into frees). For efficiency reasons bare metal ports do not return this value.
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2.6 Distribution packages, package management, and deploying appli-
cations

Just as the “big” Python, MicroPython supports creation of “third party” packages, distributing them, and
easily installing them in each user’s environment. This chapter discusses how these actions are achieved.
Some familiarity with Python packaging is recommended.

2.6.1 Overview

Steps below represent a high-level workflow when creating and consuming packages:

1. Python modules and packages are turned into distribution package archives, and published at the
Python Package Index (PyPI).

2. upip package manager can be used to install a distribution package on a MicroPython port with
networking capabilities (for example, on the Unix port).

3. For ports without networking capabilities, an “installation image” can be prepared on the Unix port,
and transferred to a device by suitable means.

4. For low-memory ports, the installation image can be frozen as the bytecode into MicroPython exe-
cutable, thus minimizing the memory storage overheads.

The sections below describe this process in details.

2.6.2 Distribution packages

Python modules and packages can be packaged into archives suitable for transfer between systems, storing at
the well-known location (PyPI), and downloading on demand for deployment. These archives are known as
distribution packages (to differentiate them from Python packages (means to organize Python source code)).

The MicroPython distribution package format is a well-known tar.gz format, with some adaptations however.
The Gzip compressor, used as an external wrapper for TAR archives, by default uses 32KB dictionary size,
which means that to uncompress a compressed stream, 32KB of contguous memory needs to be allocated.
This requirement may be not satisfiable on low-memory devices, which may have total memory available
less than that amount, and even if not, a contiguous block like that may be hard to allocate due to memory
fragmentation. To accommodate these constraints, MicroPython distribution packages use Gzip compression
with the dictionary size of 4K, which should be a suitable compromise with still achieving some compression
while being able to uncompressed even by the smallest devices.

Besides the small compression dictionary size, MicroPython distribution packages also have other optimiza-
tions, like removing any files from the archive which aren’t used by the installation process. In particular,
upip package manager doesn’t execute setup.py during installation (see below), and thus that file is not
included in the archive.

At the same time, these optimizations make MicroPython distribution packages not compatible with
CPython’s package manager, pip. This isn’t considered a big problem, because:

1. Packages can be installed with upip, and then can be used with CPython (if they are compatible with
it).

2. In the other direction, majority of CPython packages would be incompatible with MicroPython by
various reasons, first of all, the reliance on features not implemented by MicroPython.

Summing up, the MicroPython distribution package archives are highly optimized for MicroPython’s target
environments, which are highly resource constrained devices.

154 Chapter 2. The MicroPython language



MicroPython Documentation, �� 1.11

2.6.3 upip package manager

MicroPython distribution packages are intended to be installed using the upip package manager. upip is
a Python application which is usually distributed (as frozen bytecode) with network-enabled MicroPython
ports. At the very least, upip is available in the MicroPython Unix port.

On any MicroPython port providing upip, it can be accessed as following:

import upip
upip.help()
upip.install(package_or_package_list, [path])

Where package_or_package_list is the name of a distribution package to install, or a list of such names to
install multiple packages. Optional path parameter specifies filesystem location to install under and defaults
to the standard library location (see below).

An example of installing a specific package and then using it:

>>> import upip
>>> upip.install("micropython-pystone_lowmem")
[...]
>>> import pystone_lowmem
>>> pystone_lowmem.main()

Note that the name of Python package and the name of distribution package for it in general don’t have to
match, and oftentimes they don’t. This is because PyPI provides a central package repository for all different
Python implementations and versions, and thus distribution package names may need to be namespaced for a
particular implementation. For example, all packages from micropython-lib follow this naming convention:
for a Python module or package named foo, the distribution package name is micropython-foo.

For the ports which run MicroPython executable from the OS command prompts (like the Unix port),
upip can be (and indeed, usually is) run from the command line instead of MicroPython’s own REPL. The
commands which corresponds to the example above are:

micropython -m upip -h
micropython -m upip install [-p <path>] <packages>...
micropython -m upip install micropython-pystone_lowmem

[TODO: Describe installation path.]

2.6.4 Cross-installing packages

For MicroPython ports without native networking capabilities, the recommend process is “cross-installing”
them into a “directory image” using the MicroPython Unix port, and then transferring this image to a
device by suitable means.

Installing to a directory image involves using -p switch to upip:

micropython -m upip install -p install_dir micropython-pystone_lowmem

After this command, the package content (and contents of every depenency packages) will be available
in the install_dir/ subdirectory. You would need to transfer contents of this directory (without the
install_dir/ prefix) to the device, at the suitable location, where it can be found by the Python import
statement (see discussion of the upip installation path above).
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2.6.5 Cross-installing packages with freezing

For the low-memory MicroPython ports, the process described in the previous section does not provide the
most efficient resource usage,because the packages are installed in the source form, so need to be compiled
to the bytecome on each import. This compilation requires RAM, and the resulting bytecode is also stored
in RAM, reducing its amount available for storing application data. Moreover, the process above requires
presence of the filesystem on a device, and the most resource-constrained devices may not even have it.

The bytecode freezing is a process which resolves all the issues mentioned above:

• The source code is pre-compiled into bytecode and store as such.

• The bytecode is stored in ROM, not RAM.

• Filesystem is not required for frozen packages.

Using frozen bytecode requires building the executable (firmware) for a given MicroPython port from the
C source code. Consequently, the process is:

1. Follow the instructions for a particular port on setting up a toolchain and building the port. For
example, for ESP8266 port, study instructions in ports/esp8266/README.md and follow them. Make
sure you can build the port and deploy the resulting executable/firmware successfully before proceeding
to the next steps.

2. Build MicroPython Unix port and make sure it is in your PATH and you can execute micropython.

3. Change to port’s directory (e.g. ports/esp8266/ for ESP8266).

4. Run make clean-frozen. This step cleans up any previous modules which were installed for freezing
(consequently, you need to skip this step to add additional modules, instead of starting from scratch).

5. Run micropython -m upip install -p modules <packages>... to install packages you want to
freeze.

6. Run make clean.

7. Run make.

After this, you should have the executable/firmware with modules as the bytecode inside, which you can
deploy the usual way.

Few notes:

1. Step 5 in the sequence above assumes that the distribution package is available from PyPI. If that is
not the case, you would need to copy Python source files manually to modules/ subdirectory of the
port port directory. (Note that upip does not support installing from e.g. version control repositories).

2. The firmware for baremetal devices usually has size restrictions, so adding too many frozen modules
may overflow it. Usually, you would get a linking error if this happens. However, in some cases, an
image may be produced, which is not runnable on a device. Such cases are in general bugs, and should
be reported and further investigated. If you face such a situation, as an initial step, you may want to
decrease the amount of frozen modules included.

2.6.6 Creating distribution packages

Distribution packages for MicroPython are created in the same manner as for CPython or any other Python
implementation, see references at the end of chapter. Setuptools (instead of distutils) should be used, because
distutils do not support dependencies and other features. “Source distribution” (sdist) format is used for
packaging. The post-processing discussed above, (and pre-processing discussed in the following section) is
achieved by using custom sdist command for setuptools. Thus, packaging steps remain the same as for
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the standard setuptools, the user just needs to override sdist command implementation by passing the
appropriate argument to setup() call:

from setuptools import setup
import sdist_upip

setup(
...,
cmdclass={'sdist': sdist_upip.sdist}

)

The sdist_upip.py module as referenced above can be found in micropython-lib: https://github.com/
micropython/micropython-lib/blob/master/sdist_upip.py

2.6.7 Application resources

A complete application, besides the source code, oftentimes also consists of data files, e.g. web page templates,
game images, etc. It’s clear how to deal with those when application is installed manually - you just put
those data files in the filesystem at some location and use the normal file access functions.

The situation is different when deploying applications from packages - this is more advanced, streamlined
and flexible way, but also requires more advanced approach to accessing data files. This approach is treating
the data files as “resources”, and abstracting away access to them.

Python supports resource access using its “setuptools” library, using pkg_resources module. MicroPy-
thon, following its usual approach, implements subset of the functionality of that module, specifically
pkg_resources.resource_stream(package, resource) function. The idea is that an application calls
this function, passing a resource identifier, which is a relative path to data file within the specified package
(usually top-level application package). It returns a stream object which can be used to access resource
contents. Thus, the resource_stream() emulates interface of the standard open() function.

Implementation-wise, resource_stream() uses file operations underlyingly, if distribution package is install
in the filesystem. However, it also supports functioning without the underlying filesystem, e.g. if the package
is frozen as the bytecode. This however requires an extra intermediate step when packaging application -
creation of “Python resource module”.

The idea of this module is to convert binary data to a Python bytes object, and put it into the dictionary,
indexed by the resource name. This conversion is done automatically using overridden sdist command
described in the previous section.

Let’s trace the complete process using the following example. Suppose your application has the following
structure:

my_app/
__main__.py
utils.py
data/

page.html
image.png

__main__.py and utils.py should access resources using the following calls:

import pkg_resources

pkg_resources.resource_stream(__name__, "data/page.html")
pkg_resources.resource_stream(__name__, "data/image.png")
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You can develop and debug using the MicroPython Unix port as usual. When time comes to make a
distribution package out of it, just use overridden “sdist” command from sdist_upip.py module as described
in the previous section.

This will create a Python resource module named R.py, based on the files declared in MANIFEST or MANIFEST.
in files (any non-.py file will be considered a resource and added to R.py) - before proceeding with the normal
packaging steps.

Prepared like this, your application will work both when deployed to filesystem and as frozen bytecode.

If you would like to debug R.py creation, you can run:

python3 setup.py sdist --manifest-only

Alternatively, you can use tools/mpy_bin2res.py script from the MicroPython distribution, in which can
you will need to pass paths to all resource files:

mpy_bin2res.py data/page.html data/image.png

2.6.8 References

• Python Packaging User Guide: https://packaging.python.org/

• Setuptools documentation: https://setuptools.readthedocs.io/

• Distutils documentation: https://docs.python.org/3/library/distutils.html

2.7 Inline Assembler for Thumb2 architectures

This document assumes some familiarity with assembly language programming and should be read after
studying the tutorial. For a detailed description of the instruction set consult the Architecture Reference
Manual detailed below. The inline assembler supports a subset of the ARM Thumb-2 instruction set de-
scribed here. The syntax tries to be as close as possible to that defined in the above ARM manual, converted
to Python function calls.

Instructions operate on 32 bit signed integer data except where stated otherwise. Most supported instructions
operate on registers R0-R7 only: where R8-R15 are supported this is stated. Registers R8-R12 must be
restored to their initial value before return from a function. Registers R13-R15 constitute the Link Register,
Stack Pointer and Program Counter respectively.

2.7.1 Document conventions

Where possible the behaviour of each instruction is described in Python, for example

• add(Rd, Rn, Rm) Rd = Rn + Rm

This enables the effect of instructions to be demonstrated in Python. In certain case this is impossible
because Python doesn’t support concepts such as indirection. The pseudocode employed in such cases is
described on the relevant page.

2.7.2 Instruction Categories

The following sections details the subset of the ARM Thumb-2 instruction set supported by MicroPython.
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Register move instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R15. immN denotes an immediate value having a width of N
bits. These instructions affect the condition flags.

Register moves

Where immediate values are used, these are zero-extended to 32 bits. Thus mov(R0, 0xff) will set R0 to
255.

• mov(Rd, imm8) Rd = imm8

• mov(Rd, Rn) Rd = Rn

• movw(Rd, imm16) Rd = imm16

• movt(Rd, imm16) Rd = (Rd & 0xffff) | (imm16 << 16)

movt writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

• movwt(Rd, imm32) Rd = imm32

movwt is a pseudo-instruction: the MicroPython assembler emits a movw followed by a movt to move a 32-bit
value into Rd.

Load register from memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value
having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + immN] is the contents of
the memory address obtained by adding Rn and the offset immN. Offsets are measured in bytes. These
instructions affect the condition flags.

Register Load

• ldr(Rt, [Rn, imm7]) Rt = [Rn + imm7] Load a 32 bit word

• ldrb(Rt, [Rn, imm5]) Rt = [Rn + imm5] Load a byte

• ldrh(Rt, [Rn, imm6]) Rt = [Rn + imm6] Load a 16 bit half word

Where a byte or half word is loaded, it is zero-extended to 32 bits.

The specified immediate offsets are measured in bytes. Hence in the case of ldr the 7 bit value enables 32
bit word aligned values to be accessed with a maximum offset of 31 words. In the case of ldrh the 6 bit
value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.
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Store register to memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value
having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + imm5] is the contents of
the memory address obtained by adding Rn and the offset imm5. Offsets are measured in bytes. These
instructions do not affect the condition flags.

Register Store

• str(Rt, [Rn, imm7]) [Rn + imm7] = Rt Store a 32 bit word

• strb(Rt, [Rn, imm5]) [Rn + imm5] = Rt Store a byte (b0-b7)

• strh(Rt, [Rn, imm6]) [Rn + imm6] = Rt Store a 16 bit half word (b0-b15)

The specified immediate offsets are measured in bytes. Hence in the case of str the 7 bit value enables 32
bit word aligned values to be accessed with a maximum offset of 31 words. In the case of strh the 6 bit
value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.

Logical & Bitwise instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R7 except in the case of the special instructions where R0-R15
may be used. Rn<a-b> denotes an ARM register whose contents must lie in range a <= contents <= b. In
the case of instructions with two register arguments, it is permissible for them to be identical. For example
the following will zero R0 (Python R0 ^= R0) regardless of its initial contents.

• eor(r0, r0)

These instructions affect the condition flags except where stated.

Logical instructions

• and_(Rd, Rn) Rd &= Rn

• orr(Rd, Rn) Rd |= Rn

• eor(Rd, Rn) Rd ^= Rn

• mvn(Rd, Rn) Rd = Rn ^ 0xffffffff i.e. Rd = 1’s complement of Rn

• bic(Rd, Rn) Rd &= ~Rn bit clear Rd using mask in Rn

Note the use of “and_” instead of “and”, because “and” is a reserved keyword in Python.

Shift and rotation instructions

• lsl(Rd, Rn<0-31>) Rd <<= Rn

• lsr(Rd, Rn<1-32>) Rd = (Rd & 0xffffffff) >> Rn Logical shift right

• asr(Rd, Rn<1-32>) Rd >>= Rn arithmetic shift right
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• ror(Rd, Rn<1-31>) Rd = rotate_right(Rd, Rn) Rd is rotated right Rn bits.

A rotation by (for example) three bits works as follows. If Rd initially contains bits b31 b30..b0 after
rotation it will contain b2 b1 b0 b31 b30..b3

Special instructions

Condition codes are unaffected by these instructions.

• clz(Rd, Rn) Rd = count_leading_zeros(Rn)

count_leading_zeros(Rn) returns the number of binary zero bits before the first binary one bit in Rn.

• rbit(Rd, Rn) Rd = bit_reverse(Rn)

bit_reverse(Rn) returns the bit-reversed contents of Rn. If Rn contains bits b31 b30..b0 Rd will be set to
b0 b1 b2..b31

Trailing zeros may be counted by performing a bit reverse prior to executing clz.

Arithmetic instructions

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. immN denotes an immediate value having a width of
N bits e.g. imm8, imm3. carry denotes the carry condition flag, not(carry) denotes its complement. In the
case of instructions with more than one register argument, it is permissible for some to be identical. For
example the following will add the contents of R0 to itself, placing the result in R0:

• add(r0, r0, r0)

Arithmetic instructions affect the condition flags except where stated.

Addition

• add(Rdn, imm8) Rdn = Rdn + imm8

• add(Rd, Rn, imm3) Rd = Rn + imm3

• add(Rd, Rn, Rm) Rd = Rn +Rm

• adc(Rd, Rn) Rd = Rd + Rn + carry

Subtraction

• sub(Rdn, imm8) Rdn = Rdn - imm8

• sub(Rd, Rn, imm3) Rd = Rn - imm3

• sub(Rd, Rn, Rm) Rd = Rn - Rm

• sbc(Rd, Rn) Rd = Rd - Rn - not(carry)

Negation

• neg(Rd, Rn) Rd = -Rn

2.7. Inline Assembler for Thumb2 architectures 161



MicroPython Documentation, �� 1.11

Multiplication and division

• mul(Rd, Rn) Rd = Rd * Rn

This produces a 32 bit result with overflow lost. The result may be treated as signed or unsigned according
to the definition of the operands.

• sdiv(Rd, Rn, Rm) Rd = Rn / Rm

• udiv(Rd, Rn, Rm) Rd = Rn / Rm

These functions perform signed and unsigned division respectively. Condition flags are not affected.

Comparison instructions

These perform an arithmetic or logical instruction on two arguments, discarding the result but setting the
condition flags. Typically these are used to test data values without changing them prior to executing a
conditional branch.

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. imm8 denotes an immediate value having a width of 8
bits.

The Application Program Status Register (APSR)

This contains four bits which are tested by the conditional branch instructions. Typically a conditional branch
will test multiple bits, for example bge(LABEL). The meaning of condition codes can depend on whether the
operands of an arithmetic instruction are viewed as signed or unsigned integers. Thus bhi(LABEL) assumes
unsigned numbers were processed while bgt(LABEL) assumes signed operands.

APSR Bits

• Z (zero)

This is set if the result of an operation is zero or the operands of a comparison are equal.

• N (negative)

Set if the result is negative.

• C (carry)

An addition sets the carry flag when the result overflows out of the MSB, for example adding 0x80000000
and 0x80000000. By the nature of two’s complement arithmetic this behaviour is reversed on subtraction,
with a borrow indicated by the carry bit being clear. Thus 0x10 - 0x01 is executed as 0x10 + 0xffffffff which
will set the carry bit.

• V (overflow)

The overflow flag is set if the result, viewed as a two’s compliment number, has the “wrong” sign in relation
to the operands. For example adding 1 to 0x7fffffff will set the overflow bit because the result (0x8000000),
viewed as a two’s complement integer, is negative. Note that in this instance the carry bit is not set.
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Comparison instructions

These set the APSR (Application Program Status Register) N (negative), Z (zero), C (carry) and V (overflow)
flags.

• cmp(Rn, imm8) Rn - imm8

• cmp(Rn, Rm) Rn - Rm

• cmn(Rn, Rm) Rn + Rm

• tst(Rn, Rm) Rn & Rm

Conditional execution

The it and ite instructions provide a means of conditionally executing from one to four subsequent instruc-
tions without the need for a label.

• it(<condition>) If then

Execute the next instruction if <condition> is true:

cmp(r0, r1)
it(eq)
mov(r0, 100) # runs if r0 == r1
# execution continues here

• ite(<condition>) If then else

If <condtion> is true, execute the next instruction, otherwise execute the subsequent one. Thus:

cmp(r0, r1)
ite(eq)
mov(r0, 100) # runs if r0 == r1
mov(r0, 200) # runs if r0 != r1
# execution continues here

This may be extended to control the execution of upto four subsequent instructions: it[x[y[z]]] where
x,y,z=t/e; e.g. itt, itee, itete, ittte, itttt, iteee, etc.

Branch instructions

These cause execution to jump to a target location usually specified by a label (see the label assembler
directive). Conditional branches and the it and ite instructions test the Application Program Status
Register (APSR) N (negative), Z (zero), C (carry) and V (overflow) flags to determine whether the branch
should be executed.

Most of the exposed assembler instructions (including move operations) set the flags but there are explicit
comparison instructions to enable values to be tested.

Further detail on the meaning of the condition flags is provided in the section describing comparison functions.

Document conventions

Notation: Rm denotes ARM registers R0-R15. LABEL denotes a label defined with the label() assembler
directive. <condition> indicates one of the following condition specifiers:
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• eq Equal to (result was zero)

• ne Not equal

• cs Carry set

• cc Carry clear

• mi Minus (negative)

• pl Plus (positive)

• vs Overflow set

• vc Overflow clear

• hi > (unsigned comparison)

• ls <= (unsigned comparison)

• ge >= (signed comparison)

• lt < (signed comparison)

• gt > (signed comparison)

• le <= (signed comparison)

Branch to label

• b(LABEL) Unconditional branch

• beq(LABEL) branch if equal

• bne(LABEL) branch if not equal

• bge(LABEL) branch if greater than or equal

• bgt(LABEL) branch if greater than

• blt(LABEL) branch if less than (<) (signed)

• ble(LABEL) branch if less than or equal to (<=) (signed)

• bcs(LABEL) branch if carry flag is set

• bcc(LABEL) branch if carry flag is clear

• bmi(LABEL) branch if negative

• bpl(LABEL) branch if positive

• bvs(LABEL) branch if overflow flag set

• bvc(LABEL) branch if overflow flag is clear

• bhi(LABEL) branch if higher (unsigned)

• bls(LABEL) branch if lower or equal (unsigned)

Long branches

The code produced by the branch instructions listed above uses a fixed bit width to specify the branch
destination, which is PC relative. Consequently in long programs where the branch instruction is remote
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from its destination the assembler will produce a “branch not in range” error. This can be overcome with
the “wide” variants such as

• beq_w(LABEL) long branch if equal

Wide branches use 4 bytes to encode the instruction (compared with 2 bytes for standard branch instruc-
tions).

Subroutines (functions)

When entering a subroutine the processor stores the return address in register r14, also known as the link
register (lr). Return to the instruction after the subroutine call is performed by updating the program
counter (r15 or pc) from the link register, This process is handled by the following instructions.

• bl(LABEL)

Transfer execution to the instruction after LABEL storing the return address in the link register (r14).

• bx(Rm) Branch to address specified by Rm.

Typically bx(lr) is issued to return from a subroutine. For nested subroutines the link register of outer
scopes must be saved (usually on the stack) before performing inner subroutine calls.

Stack push and pop

Document conventions

The push() and pop() instructions accept as their argument a register set containing a subset, or possibly
all, of the general-purpose registers R0-R12 and the link register (lr or R14). As with any Python set
the order in which the registers are specified is immaterial. Thus the in the following example the pop()
instruction would restore R1, R7 and R8 to their contents prior to the push():

• push({r1, r8, r7}) Save three registers on the stack.

• pop({r7, r1, r8}) Restore them

Stack operations

• push({regset}) Push a set of registers onto the stack

• pop({regset}) Restore a set of registers from the stack

Miscellaneous instructions

• nop() pass no operation.

• wfi() Suspend execution in a low power state until an interrupt occurs.

• cpsid(flags) set the Priority Mask Register - disable interrupts.

• cpsie(flags) clear the Priority Mask Register - enable interrupts.

• mrs(Rd, special_reg) Rd = special_reg copy a special register to a general register. The special
register may be IPSR (Interrupt Status Register) or BASEPRI (Base Priority Register). The IPSR
provides a means of determining the exception number of an interrupt being processed. It contains
zero if no interrupt is being processed.
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Currently the cpsie() and cpsid() functions are partially implemented. They require but ignore the flags
argument and serve as a means of enabling and disabling interrupts.

Floating Point instructions

These instructions support the use of the ARM floating point coprocessor (on platforms such as the Pyboard
which are equipped with one). The FPU has 32 registers known as s0-s31 each of which can hold a single
precision float. Data can be passed between the FPU registers and the ARM core registers with the vmov
instruction.

Note that MicroPython doesn’t support passing floats to assembler functions, nor can you put a float into
r0 and expect a reasonable result. There are two ways to overcome this. The first is to use arrays, and the
second is to pass and/or return integers and convert to and from floats in code.

Document conventions

Notation: Sd, Sm, Sn denote FPU registers, Rd, Rm, Rn denote ARM core registers. The latter can be any
ARM core register although registers R13-R15 are unlikely to be appropriate in this context.

Arithmetic

• vadd(Sd, Sn, Sm) Sd = Sn + Sm

• vsub(Sd, Sn, Sm) Sd = Sn - Sm

• vneg(Sd, Sm) Sd = -Sm

• vmul(Sd, Sn, Sm) Sd = Sn * Sm

• vdiv(Sd, Sn, Sm) Sd = Sn / Sm

• vsqrt(Sd, Sm) Sd = sqrt(Sm)

Registers may be identical: vmul(S0, S0, S0) will execute S0 = S0*S0

Move between ARM core and FPU registers

• vmov(Sd, Rm) Sd = Rm

• vmov(Rd, Sm) Rd = Sm

The FPU has a register known as FPSCR, similar to the ARM core’s APSR, which stores condition codes
plus other data. The following instructions provide access to this.

• vmrs(APSR_nzcv, FPSCR)

Move the floating-point N, Z, C, and V flags to the APSR N, Z, C, and V flags.

This is done after an instruction such as an FPU comparison to enable the condition codes to be tested by
the assembler code. The following is a more general form of the instruction.

• vmrs(Rd, FPSCR) Rd = FPSCR
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Move between FPU register and memory

• vldr(Sd, [Rn, offset]) Sd = [Rn + offset]

• vstr(Sd, [Rn, offset]) [Rn + offset] = Sd

Where [Rn + offset] denotes the memory address obtained by adding Rn to the offset. This is specified in
bytes. Since each float value occupies a 32 bit word, when accessing arrays of floats the offset must always
be a multiple of four bytes.

Data Comparison

• vcmp(Sd, Sm)

Compare the values in Sd and Sm and set the FPU N, Z, C, and V flags. This would normally be followed
by vmrs(APSR_nzcv, FPSCR) to enable the results to be tested.

Convert between integer and float

• vcvt_f32_s32(Sd, Sm) Sd = float(Sm)

• vcvt_s32_f32(Sd, Sm) Sd = int(Sm)

Assembler Directives

Labels

• label(INNER1)

This defines a label for use in a branch instruction. Thus elsewhere in the code a b(INNER1) will cause
execution to continue with the instruction after the label directive.

Defining inline data

The following assembler directives facilitate embedding data in an assembler code block.

• data(size, d0, d1 .. dn)

The data directive creates n array of data values in memory. The first argument specifies the size in bytes
of the subsequent arguments. Hence the first statement below will cause the assembler to put three bytes
(with values 2, 3 and 4) into consecutive memory locations while the second will cause it to emit two four
byte words.

data(1, 2, 3, 4)
data(4, 2, 100000)

Data values longer than a single byte are stored in memory in little-endian format.

• align(nBytes)

Align the following instruction to an nBytes value. ARM Thumb-2 instructions must be two byte aligned,
hence it’s advisable to issue align(2) after data directives and prior to any subsequent code. This ensures
that the code will run irrespective of the size of the data array.
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2.7.3 Usage examples

These sections provide further code examples and hints on the use of the assembler.

Hints and tips

The following are some examples of the use of the inline assembler and some information on how to work
around its limitations. In this document the term “assembler function” refers to a function declared in
Python with the @micropython.asm_thumb decorator, whereas “subroutine” refers to assembler code called
from within an assembler function.

Code branches and subroutines

It is important to appreciate that labels are local to an assembler function. There is currently no way for a
subroutine defined in one function to be called from another.

To call a subroutine the instruction bl(LABEL) is issued. This transfers control to the instruction following
the label(LABEL) directive and stores the return address in the link register (lr or r14). To return the
instruction bx(lr) is issued which causes execution to continue with the instruction following the subroutine
call. This mechanism implies that, if a subroutine is to call another, it must save the link register prior to
the call and restore it before terminating.

The following rather contrived example illustrates a function call. Note that it’s necessary at the start to
branch around all subroutine calls: subroutines end execution with bx(lr) while the outer function simply
“drops off the end” in the style of Python functions.

@micropython.asm_thumb
def quad(r0):

b(START)
label(DOUBLE)
add(r0, r0, r0)
bx(lr)
label(START)
bl(DOUBLE)
bl(DOUBLE)

print(quad(10))

The following code example demonstrates a nested (recursive) call: the classic Fibonacci sequence. Here,
prior to a recursive call, the link register is saved along with other registers which the program logic requires
to be preserved.

@micropython.asm_thumb
def fib(r0):

b(START)
label(DOFIB)
push({r1, r2, lr})
cmp(r0, 1)
ble(FIBDONE)
sub(r0, 1)
mov(r2, r0) # r2 = n -1
bl(DOFIB)
mov(r1, r0) # r1 = fib(n -1)

(����)
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sub(r0, r2, 1)
bl(DOFIB) # r0 = fib(n -2)
add(r0, r0, r1)
label(FIBDONE)
pop({r1, r2, lr})
bx(lr)
label(START)
bl(DOFIB)

for n in range(10):
print(fib(n))

Argument passing and return

The tutorial details the fact that assembler functions can support from zero to three arguments, which must
(if used) be named r0, r1 and r2. When the code executes the registers will be initialised to those values.

The data types which can be passed in this way are integers and memory addresses. With current firmware
all possible 32 bit values may be passed and returned. If the return value may have the most significant bit
set a Python type hint should be employed to enable MicroPython to determine whether the value should
be interpreted as a signed or unsigned integer: types are int or uint.

@micropython.asm_thumb
def uadd(r0, r1) -> uint:

add(r0, r0, r1)

hex(uadd(0x40000000,0x40000000)) will return 0x80000000, demonstrating the passing and return of in-
tegers where bits 30 and 31 differ.

The limitations on the number of arguments and return values can be overcome by means of the array
module which enables any number of values of any type to be accessed.

Multiple arguments

If a Python array of integers is passed as an argument to an assembler function, the function will receive the
address of a contiguous set of integers. Thus multiple arguments can be passed as elements of a single array.
Similarly a function can return multiple values by assigning them to array elements. Assembler functions
have no means of determining the length of an array: this will need to be passed to the function.

This use of arrays can be extended to enable more than three arrays to be used. This is done using indirection:
the uctypes module supports addressof() which will return the address of an array passed as its argument.
Thus you can populate an integer array with the addresses of other arrays:

from uctypes import addressof
@micropython.asm_thumb
def getindirect(r0):

ldr(r0, [r0, 0]) # Address of array loaded from passed array
ldr(r0, [r0, 4]) # Return element 1 of indirect array (24)

def testindirect():
a = array.array('i',[23, 24])

(����)
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b = array.array('i',[0,0])
b[0] = addressof(a)
print(getindirect(b))

Non-integer data types

These may be handled by means of arrays of the appropriate data type. For example, single precision floating
point data may be processed as follows. This code example takes an array of floats and replaces its contents
with their squares.

from array import array

@micropython.asm_thumb
def square(r0, r1):

label(LOOP)
vldr(s0, [r0, 0])
vmul(s0, s0, s0)
vstr(s0, [r0, 0])
add(r0, 4)
sub(r1, 1)
bgt(LOOP)

a = array('f', (x for x in range(10)))
square(a, len(a))
print(a)

The uctypes module supports the use of data structures beyond simple arrays. It enables a Python data
structure to be mapped onto a bytearray instance which may then be passed to the assembler function.

Named constants

Assembler code may be made more readable and maintainable by using named constants rather than littering
code with numbers. This may be achieved thus:

MYDATA = const(33)

@micropython.asm_thumb
def foo():

mov(r0, MYDATA)

The const() construct causes MicroPython to replace the variable name with its value at compile time. If
constants are declared in an outer Python scope they can be shared between multiple assembler functions
and with Python code.

Assembler code as class methods

MicroPython passes the address of the object instance as the first argument to class methods. This is
normally of little use to an assembler function. It can be avoided by declaring the function as a static
method thus:
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class foo:
@staticmethod
@micropython.asm_thumb
def bar(r0):

add(r0, r0, r0)

Use of unsupported instructions

These can be coded using the data statement as shown below. While push() and pop() are supported
the example below illustrates the principle. The necessary machine code may be found in the ARM v7-M
Architecture Reference Manual. Note that the first argument of data calls such as

data(2, 0xe92d, 0x0f00) # push r8,r9,r10,r11

indicates that each subsequent argument is a two byte quantity.

Overcoming MicroPython’s integer restriction

The Pyboard chip includes a CRC generator. Its use presents a problem in MicroPython because the returned
values cover the full gamut of 32 bit quantities whereas small integers in MicroPython cannot have differing
values in bits 30 and 31. This limitation is overcome with the following code, which uses assembler to put
the result into an array and Python code to coerce the result into an arbitrary precision unsigned integer.

from array import array
import stm

def enable_crc():
stm.mem32[stm.RCC + stm.RCC_AHB1ENR] |= 0x1000

def reset_crc():
stm.mem32[stm.CRC+stm.CRC_CR] = 1

@micropython.asm_thumb
def getval(r0, r1):

movwt(r3, stm.CRC + stm.CRC_DR)
str(r1, [r3, 0])
ldr(r2, [r3, 0])
str(r2, [r0, 0])

def getcrc(value):
a = array('i', [0])
getval(a, value)
return a[0] & 0xffffffff # coerce to arbitrary precision

enable_crc()
reset_crc()
for x in range(20):

print(hex(getcrc(0)))
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2.7.4 References

• Assembler Tutorial

• Wiki hints and tips

• uPy Inline Assembler source-code, emitinlinethumb.c

• ARM Thumb2 Instruction Set Quick Reference Card

• RM0090 Reference Manual

• ARM v7-M Architecture Reference Manual (Available on the ARM site after a simple registration
procedure. Also available on academic sites but beware of out of date versions.)
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CHAPTER 3

Developing and building MicroPython

This chapter describes some options for extending MicroPython in C. Note that it doesn’t aim to be a
complete guide for developing with MicroPython. See the getting started guide for further information.

3.1 MicroPython external C modules

When developing modules for use with MicroPython you may find you run into limitations with the Python
environment, often due to an inability to access certain hardware resources or Python speed limitations.

If your limitations can’t be resolved with suggestions in Maximising MicroPython Speed, writing some or all
of your module in C is a viable option.

If your module is designed to access or work with commonly available hardware or libraries please consider
implementing it inside the MicroPython source tree alongside similar modules and submitting it as a pull
request. If however you’re targeting obscure or proprietary systems it may make more sense to keep this
external to the main MicroPython repository.

This chapter describes how to compile such external modules into the MicroPython executable or firmware
image.

3.1.1 Structure of an external C module

A MicroPython user C module is a directory with the following files:

• *.c and/or *.h source code files for your module.

These will typically include the low level functionality being implemented and the MicroPython binding
functions to expose the functions and module(s).

Currently the best reference for writing these functions/modules is to find similar modules within the
MicroPython tree and use them as examples.

• micropython.mk contains the Makefile fragment for this module.
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$(USERMOD_DIR) is available in micropython.mk as the path to your module directory. As it’s rede-
fined for each c module, is should be expanded in your micropython.mk to a local make variable, eg
EXAMPLE_MOD_DIR := $(USERMOD_DIR)

Your micropython.mk must add your modules C files relative to your expanded copy of
$(USERMOD_DIR) to SRC_USERMOD, eg SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

If you have custom CFLAGS settings or include folders to define, these should be added to
CFLAGS_USERMOD.

See below for full usage example.

3.1.2 Basic Example

This simple module named example provides a single function example.add_ints(a, b) which adds the
two integer args together and returns the result.

Directory:

example/
��� example.c
��� micropython.mk

example.c

// Include required definitions first.
#include "py/obj.h"
#include "py/runtime.h"
#include "py/builtin.h"

// This is the function which will be called from Python as example.add_ints(a, b).
STATIC mp_obj_t example_add_ints(mp_obj_t a_obj, mp_obj_t b_obj) {

// Extract the ints from the micropython input objects
int a = mp_obj_get_int(a_obj);
int b = mp_obj_get_int(b_obj);

// Calculate the addition and convert to MicroPython object.
return mp_obj_new_int(a + b);

}
// Define a Python reference to the function above
STATIC MP_DEFINE_CONST_FUN_OBJ_2(example_add_ints_obj, example_add_ints);

// Define all properties of the example module.
// Table entries are key/value pairs of the attribute name (a string)
// and the MicroPython object reference.
// All identifiers and strings are written as MP_QSTR_xxx and will be
// optimized to word-sized integers by the build system (interned strings).
STATIC const mp_rom_map_elem_t example_module_globals_table[] = {

{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_example) },
{ MP_ROM_QSTR(MP_QSTR_add_ints), MP_ROM_PTR(&example_add_ints_obj) },

};
STATIC MP_DEFINE_CONST_DICT(example_module_globals, example_module_globals_table);

// Define module object.
const mp_obj_module_t example_user_cmodule = {

(����)
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.base = { &mp_type_module },

.globals = (mp_obj_dict_t*)&example_module_globals,
};

// Register the module to make it available in Python
MP_REGISTER_MODULE(MP_QSTR_example, example_user_cmodule, MODULE_EXAMPLE_ENABLED);

micropython.mk

EXAMPLE_MOD_DIR := $(USERMOD_DIR)

# Add all C files to SRC_USERMOD.
SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

# We can add our module folder to include paths if needed
# This is not actually needed in this example.
CFLAGS_USERMOD += -I$(EXAMPLE_MOD_DIR)

Finally you will need to define MODULE_EXAMPLE_ENABLED to 1. This can be done by adding
CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 to the make command, or editing mpconfigport.h or
mpconfigboard.h to add

#define MODULE_EXAMPLE_ENABLED (1)

Note that the exact method depends on the port as they have different structures. If not done correctly it
will compile but importing will fail to find the module.

3.1.3 Compiling the cmodule into MicroPython

To build such a module, compile MicroPython (see getting started) with an extra make flag named
USER_C_MODULES set to the directory containing all modules you want included (not to the module itself).
For example:

Directory:

my_project/
��� modules/
� ���example/
� ���example.c
� ���micropython.mk
��� micropython/

���ports/
... ���stm32/

...

Building for stm32 port:

cd my_project/micropython/ports/stm32
make USER_C_MODULES=../../../modules CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 all
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3.1.4 Module usage in MicroPython

Once built into your copy of MicroPython, the module implemented in example.c above can now be accessed
in Python just like any other builtin module, eg

import example
print(example.add_ints(1, 3))
# should display 4
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CHAPTER 4

MicroPython license information

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
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CHAPTER 5

Quick reference for the pyboard

The below pinout is for PYBv1.1. You can also view pinouts for other versions of the pyboard: PYBv1.0 or
PYBLITEv1.0-AC or PYBLITEv1.0.
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Below is a quick reference for the pyboard. If it is your first time working with this board please consider
reading the following sections first:

5.1 General information about the pyboard

��

• General information about the pyboard

– Local filesystem and SD card

– Boot modes

– Errors: flashing LEDs

– Guide for using the pyboard with Windows

– The pyboard hardware

– Datasheets for the components on the pyboard

– Datasheets for other components

5.1.1 Local filesystem and SD card

There is a small internal filesystem (a drive) on the pyboard, called /flash, which is stored within the
microcontroller’s flash memory. If a micro SD card is inserted into the slot, it is available as /sd.

When the pyboard boots up, it needs to choose a filesystem to boot from. If there is no SD card, then it
uses the internal filesystem /flash as the boot filesystem, otherwise, it uses the SD card /sd. After the
boot, the current directory is set to one of the directories above.

If needed, you can prevent the use of the SD card by creating an empty file called /flash/SKIPSD. If this
file exists when the pyboard boots up then the SD card will be skipped and the pyboard will always boot
from the internal filesystem (in this case the SD card won’t be mounted but you can still mount and use it
later in your program using os.mount).

(Note that on older versions of the board, /flash is called 0:/ and /sd is called 1:/).

The boot filesystem is used for 2 things: it is the filesystem from which the boot.py and main.py files are
searched for, and it is the filesystem which is made available on your PC over the USB cable.

The filesystem will be available as a USB flash drive on your PC. You can save files to the drive, and edit
boot.py and main.py.

Remember to eject (on Linux, unmount) the USB drive before you reset your pyboard.

5.1.2 Boot modes

If you power up normally, or press the reset button, the pyboard will boot into standard mode: the boot.py
file will be executed first, then the USB will be configured, then main.py will run.

You can override this boot sequence by holding down the user switch as the board is booting up. Hold down
user switch and press reset, and then as you continue to hold the user switch, the LEDs will count in binary.
When the LEDs have reached the mode you want, let go of the user switch, the LEDs for the selected mode
will flash quickly, and the board will boot.
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The modes are:

1. Green LED only, standard boot: run boot.py then main.py.

2. Orange LED only, safe boot: don’t run any scripts on boot-up.

3. Green and orange LED together, filesystem reset: resets the flash filesystem to its factory state, then
boots in safe mode.

If your filesystem becomes corrupt, boot into mode 3 to fix it. If resetting the filesystem while plugged into
your compute doesn’t work, you can try doing the same procedure while the board is plugged into a USB
charger, or other USB power supply without data connection.

5.1.3 Errors: flashing LEDs

There are currently 2 kinds of errors that you might see:

1. If the red and green LEDs flash alternatively, then a Python script (eg main.py) has an er-
ror. Use the REPL to debug it.

2. If all 4 LEDs cycle on and off slowly, then there was a hard fault. This cannot be recovered from and
you need to do a hard reset.

5.1.4 Guide for using the pyboard with Windows

The following PDF guide gives information about using the pyboard with Windows, including setting up
the serial prompt and downloading new firmware using DFU programming: PDF guide.

5.1.5 The pyboard hardware

For the pyboard:

• v1.1

– PYBv1.1 schematics and layout (2.9MiB PDF)

• v1.0

– PYBv1.0 schematics and layout (2.4MiB PDF)

– PYBv1.0 metric dimensions (360KiB PDF)

– PYBv1.0 imperial dimensions (360KiB PDF)

For the official skin modules:

• LCD32MKv1.0 schematics (194KiB PDF)

• AMPv1.0 schematics (209KiB PDF)

• LCD160CRv1.0: see lcd160cr

5.1.6 Datasheets for the components on the pyboard

• The microcontroller: STM32F405RGT6 (link to manufacturer’s site)

• The accelerometer: Freescale MMA7660 (800kiB PDF)

• The LDO voltage regulator: Microchip MCP1802 (400kiB PDF)
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5.1.7 Datasheets for other components

• The LCD display on the LCD touch-sensor skin: Newhaven Display NHD-C12832A1Z-FSW-FBW-3V3
(460KiB PDF)

• The touch sensor chip on the LCD touch-sensor skin: Freescale MPR121 (280KiB PDF)

• The digital potentiometer on the audio skin: Microchip MCP4541 (2.7MiB PDF)

5.2 MicroPython tutorial for the pyboard

This tutorial is intended to get you started with your pyboard. All you need is a pyboard and a micro-USB
cable to connect it to your PC. If it is your first time, it is recommended to follow the tutorial through in
the order below.

5.2.1 Introduction to the pyboard

To get the most out of your pyboard, there are a few basic things to understand about how it works.

Caring for your pyboard

Because the pyboard does not have a housing it needs a bit of care:

• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is soldered through
the board and is relatively strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the pyboard and destroy them. If you experience a lot
of static electricity in your area (eg dry and cold climates), take extra care not to shock the pyboard. If
your pyboard came in a black plastic box, then this box is the best way to store and carry the pyboard
as it is an anti-static box (it is made of a conductive plastic, with conductive foam inside).

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software
on the pyboard, so feel free to play around with writing code as much as you like. If the filesystem gets
corrupt, see below on how to reset it. In the worst case you might need to reflash the MicroPython software,
but that can be done over USB.

Layout of the pyboard

The micro USB connector is on the top right, the micro SD card slot on the top left of the board. There are
4 LEDs between the SD slot and USB connector. The colours are: red on the bottom, then green, orange,
and blue on the top. There are 2 switches: the right one is the reset switch, the left is the user switch.

Plugging in and powering on

The pyboard can be powered via USB. Connect it to your PC via a micro USB cable. There is only one way
that the cable will fit. Once connected, the green LED on the board should flash quickly.
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Powering by an external power source

The pyboard can be powered by a battery or other external power source.

Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There
is no polarity protection on the pyboard so you must be careful when connecting anything to
VIN.

The input voltage must be between 3.6V and 10V.

5.2.2 Running your first script

Let’s jump right in and get a Python script running on the pyboard. After all, that’s what it’s all about!

Connecting your pyboard

Connect your pyboard to your PC (Windows, Mac or Linux) with a micro USB cable. There is only one
way that the cable will connect, so you can’t get it wrong.
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When the pyboard is connected to your PC it will power on and enter the start up process (the boot process).
The green LED should light up for half a second or less, and when it turns off it means the boot process has
completed.
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Opening the pyboard USB drive

Your PC should now recognise the pyboard. It depends on the type of PC you have as to what happens
next:

• Windows: Your pyboard will appear as a removable USB flash drive. Windows may automatically
pop-up a window, or you may need to go there using Explorer.

Windows will also see that the pyboard has a serial device, and it will try to automatically configure
this device. If it does, cancel the process. We will get the serial device working in the next tutorial.

• Mac: Your pyboard will appear on the desktop as a removable disc. It will probably be called
“NONAME”. Click on it to open the pyboard folder.

• Linux: Your pyboard will appear as a removable medium. On Ubuntu it will mount automatically and
pop-up a window with the pyboard folder. On other Linux distributions, the pyboard may be mounted
automatically, or you may need to do it manually. At a terminal command line, type lsblk to see a
list of connected drives, and then mount /dev/sdb1 (replace sdb1 with the appropriate device). You
may need to be root to do this.

Okay, so you should now have the pyboard connected as a USB flash drive, and a window (or command line)
should be showing the files on the pyboard drive.

The drive you are looking at is known as /flash by the pyboard, and should contain the following 4 files:

• boot.py – this script is executed when the pyboard boots up. It sets up various configura-
tion options for the pyboard.

• main.py – this is the main script that will contain your Python program. It is executed af-
ter boot.py.

• README.txt – this contains some very basic information about getting started with the
pyboard.

• pybcdc.inf – this is a Windows driver file to configure the serial USB device. More about
this in the next tutorial.

Editing main.py

Now we are going to write our Python program, so open the main.py file in a text editor. On Windows you
can use notepad, or any other editor. On Mac and Linux, use your favourite text editor. With the file open
you will see it contains 1 line:

# main.py -- put your code here!

This line starts with a # character, which means that it is a comment. Such lines will not do anything, and
are there for you to write notes about your program.

Let’s add 2 lines to this main.py file, to make it look like this:

# main.py -- put your code here!
import pyb
pyb.LED(4).on()

The first line we wrote says that we want to use the pyb module. This module contains all the functions and
classes to control the features of the pyboard.

The second line that we wrote turns the blue LED on: it first gets the LED class from the pyb module, creates
LED number 4 (the blue LED), and then turns it on.
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Resetting the pyboard

To run this little script, you need to first save and close the main.py file, and then eject (or unmount) the
pyboard USB drive. Do this like you would a normal USB flash drive.

When the drive is safely ejected/unmounted you can get to the fun part: press the RST switch on the pyboard
to reset and run your script. The RST switch is the small black button just below the USB connector on
the board, on the right edge.

When you press RST the green LED will flash quickly, and then the blue LED should turn on and stay on.

Congratulations! You have written and run your very first MicroPython program!

5.2.3 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt
that you can access on the pyboard. Using the REPL is by far the easiest way to test out your code and run
commands. You can use the REPL in addition to writing scripts in main.py.

To use the REPL, you must connect to the serial USB device on the pyboard. How you do this depends on
your operating system.

Windows

You need to install the pyboard driver to use the serial USB device. The driver is on the pyboard’s USB
flash drive, and is called pybcdc.inf.

To install this driver you need to go to Device Manager for your computer, find the pyboard in the list of
devices (it should have a warning sign next to it because it’s not working yet), right click on the pyboard
device, select Properties, then Install Driver. You need to then select the option to find the driver manually
(don’t use Windows auto update), navigate to the pyboard’s USB drive, and select that. It should then
install. After installing, go back to the Device Manager to find the installed pyboard, and see which COM
port it is (eg COM4). More comprehensive instructions can be found in the Guide for pyboard on Windows
(PDF). Please consult this guide if you are having problems installing the driver.

You now need to run your terminal program. You can use HyperTerminal if you have it installed, or download
the free program PuTTY: putty.exe. Using your serial program you must connect to the COM port that you
found in the previous step. With PuTTY, click on “Session” in the left-hand panel, then click the “Serial”
radio button on the right, then enter you COM port (eg COM4) in the “Serial Line” box. Finally, click the
“Open” button.

Mac OS X

Open a terminal and run:

screen /dev/tty.usbmodem*

When you are finished and want to exit screen, type CTRL-A CTRL-.

Linux

Open a terminal and run:
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screen /dev/ttyACM0

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyACM1 or a higher
number for ttyACM. And, you may need to give yourself the correct permissions to access this devices (eg
group uucp or dialout, or use sudo).

Using the REPL prompt

Now let’s try running some MicroPython code directly on the pyboard.

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing
cursor. Press Enter and you should be presented with a MicroPython prompt, i.e. >>>. Let’s make sure it
is working with the obligatory test:

>>> print("hello pyboard!")
hello pyboard!

In the above, you should not type in the >>> characters. They are there to indicate that you should type
the text after it at the prompt. In the end, once you have entered the text print("hello pyboard!") and
pressed Enter, the output on your screen should look like it does above.

If you already know some python you can now try some basic commands here.

If any of this is not working you can try either a hard reset or a soft reset; see below.

Go ahead and try typing in some other commands. For example:

>>> pyb.LED(1).on()
>>> pyb.LED(2).on()
>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 20 * 'py'
'pypypypypypypypypypypypypypypypypypypypy'

Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the
MicroPython prompt, which performs a soft reset. You will see a message something like

>>>
MPY: sync filesystems
MPY: soft reboot
Micro Python v1.0 on 2014-05-03; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the
small black button closest to the micro-USB socket on the board). This will end your session, disconnecting
whatever program (PuTTY, screen, etc) that you used to connect to the pyboard.

If you are going to do a hard-reset, it’s recommended to first close your serial program and eject/unmount
the pyboard drive.

5.2. MicroPython tutorial for the pyboard 187



MicroPython Documentation, �� 1.11

5.2.4 Turning on LEDs and basic Python concepts

The easiest thing to do on the pyboard is to turn on the LEDs attached to the board. Connect the board,
and log in as described in tutorial 1. We will start by turning and LED on in the interpreter, type the
following

>>> myled = pyb.LED(1)
>>> myled.on()
>>> myled.off()

These commands turn the LED on and off.

This is all very well but we would like this process to be automated. Open the file MAIN.PY on the pyboard
in your favourite text editor. Write or paste the following lines into the file. If you are new to python, then
make sure you get the indentation correct since this matters!

led = pyb.LED(2)
while True:

led.toggle()
pyb.delay(1000)

When you save, the red light on the pyboard should turn on for about a second. To run the script, do a
soft reset (CTRL-D). The pyboard will then restart and you should see a green light continuously flashing
on and off. Success, the first step on your path to building an army of evil robots! When you are bored of
the annoying flashing light then press CTRL-C at your terminal to stop it running.

So what does this code do? First we need some terminology. Python is an object-oriented language, almost
everything in python is a class and when you create an instance of a class you get an object. Classes have
methods associated to them. A method (also called a member function) is used to interact with or control
the object.

The first line of code creates an LED object which we have then called led. When we create the object, it
takes a single parameter which must be between 1 and 4, corresponding to the 4 LEDs on the board. The
pyb.LED class has three important member functions that we will use: on(), off() and toggle(). The other
function that we use is pyb.delay() this simply waits for a given time in miliseconds. Once we have created
the LED object, the statement while True: creates an infinite loop which toggles the led between on and off
and waits for 1 second.

Exercise: Try changing the time between toggling the led and turning on a different LED.

Exercise: Connect to the pyboard directly, create a pyb.LED object and turn it on using the
on() method.

A Disco on your pyboard

So far we have only used a single LED but the pyboard has 4 available. Let’s start by creating an object for
each LED so we can control each of them. We do that by creating a list of LEDS with a list comprehension.

leds = [pyb.LED(i) for i in range(1,5)]

If you call pyb.LED() with a number that isn’t 1,2,3,4 you will get an error message. Next we will set up an
infinite loop that cycles through each of the LEDs turning them on and off.

n = 0
while True:
n = (n + 1) % 4

(����)
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leds[n].toggle()
pyb.delay(50)

Here, n keeps track of the current LED and every time the loop is executed we cycle to the next n (the %
sign is a modulus operator that keeps n between 0 and 3.) Then we access the nth LED and toggle it. If
you run this you should see each of the LEDs turning on then all turning off again in sequence.

One problem you might find is that if you stop the script and then start it again that the LEDs are stuck on
from the previous run, ruining our carefully choreographed disco. We can fix this by turning all the LEDs
off when we initialise the script and then using a try/finally block. When you press CTRL-C, MicroPython
generates a VCPInterrupt exception. Exceptions normally mean something has gone wrong and you can use
a try: command to “catch” an exception. In this case it is just the user interrupting the script, so we don’t
need to catch the error but just tell MicroPython what to do when we exit. The finally block does this, and
we use it to make sure all the LEDs are off. The full code is:

leds = [pyb.LED(i) for i in range(1,5)]
for l in leds:

l.off()

n = 0
try:

while True:
n = (n + 1) % 4
leds[n].toggle()
pyb.delay(50)

finally:
for l in leds:

l.off()

The Special LEDs

The yellow and blue LEDs are special. As well as turning them on and off, you can control their intensity
using the intensity() method. This takes a number between 0 and 255 that determines how bright it is. The
following script makes the blue LED gradually brighter then turns it off again.

led = pyb.LED(4)
intensity = 0
while True:

intensity = (intensity + 1) % 255
led.intensity(intensity)
pyb.delay(20)

You can call intensity() on LEDs 1 and 2 but they can only be off or on. 0 sets them off and any other
number up to 255 turns them on.

5.2.5 The Switch, callbacks and interrupts

The pyboard has 2 small switches, labelled USR and RST. The RST switch is a hard-reset switch, and if
you press it then it restarts the pyboard from scratch, equivalent to turning the power off then back on.

The USR switch is for general use, and is controlled via a Switch object. To make a switch object do:
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>>> sw = pyb.Switch()

Remember that you may need to type import pyb if you get an error that the name pyb does not exist.

With the switch object you can get its status:

>>> sw.value()
False

This will print False if the switch is not held, or True if it is held. Try holding the USR switch down while
running the above command.

There is also a shorthand notation to get the switch status, by “calling” the switch object:

>>> sw()
False

Switch callbacks

The switch is a very simple object, but it does have one advanced feature: the sw.callback() function. The
callback function sets up something to run when the switch is pressed, and uses an interrupt. It’s probably
best to start with an example before understanding how interrupts work. Try running the following at the
prompt:

>>> sw.callback(lambda:print('press!'))

This tells the switch to print press! each time the switch is pressed down. Go ahead and try it: press the
USR switch and watch the output on your PC. Note that this print will interrupt anything you are typing,
and is an example of an interrupt routine running asynchronously.

As another example try:

>>> sw.callback(lambda:pyb.LED(1).toggle())

This will toggle the red LED each time the switch is pressed. And it will even work while other code is
running.

To disable the switch callback, pass None to the callback function:

>>> sw.callback(None)

You can pass any function (that takes zero arguments) to the switch callback. Above we used the lambda
feature of Python to create an anonymous function on the fly. But we could equally do:

>>> def f():
... pyb.LED(1).toggle()
...
>>> sw.callback(f)

This creates a function called f and assigns it to the switch callback. You can do things this way when your
function is more complicated than a lambda will allow.

Note that your callback functions must not allocate any memory (for example they cannot create a tuple or
list). Callback functions should be relatively simple. If you need to make a list, make it beforehand and store
it in a global variable (or make it local and close over it). If you need to do a long, complicated calculation,
then use the callback to set a flag which some other code then responds to.
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Technical details of interrupts

Let’s step through the details of what is happening with the switch callback. When you register a function
with sw.callback(), the switch sets up an external interrupt trigger (falling edge) on the pin that the
switch is connected to. This means that the microcontroller will listen on the pin for any changes, and the
following will occur:

1. When the switch is pressed a change occurs on the pin (the pin goes from low to high), and the
microcontroller registers this change.

2. The microcontroller finishes executing the current machine instruction, stops execution, and saves its
current state (pushes the registers on the stack). This has the effect of pausing any code, for example
your running Python script.

3. The microcontroller starts executing the special interrupt handler associated with the switch’s external
trigger. This interrupt handler get the function that you registered with sw.callback() and executes
it.

4. Your callback function is executed until it finishes, returning control to the switch interrupt handler.

5. The switch interrupt handler returns, and the microcontroller is notified that the interrupt has been
dealt with.

6. The microcontroller restores the state that it saved in step 2.

7. Execution continues of the code that was running at the beginning. Apart from the pause, this code
does not notice that it was interrupted.

The above sequence of events gets a bit more complicated when multiple interrupts occur at the same time.
In that case, the interrupt with the highest priority goes first, then the others in order of their priority. The
switch interrupt is set at the lowest priority.

Further reading

For further information about using hardware interrupts see writing interrupt handlers.

5.2.6 The accelerometer

Here you will learn how to read the accelerometer and signal using LEDs states like tilt left and tilt right.

Using the accelerometer

The pyboard has an accelerometer (a tiny mass on a tiny spring) that can be used to detect the angle of
the board and motion. There is a different sensor for each of the x, y, z directions. To get the value of the
accelerometer, create a pyb.Accel() object and then call the x() method.

>>> accel = pyb.Accel()
>>> accel.x()
7

This returns a signed integer with a value between around -30 and 30. Note that the measurement is very
noisy, this means that even if you keep the board perfectly still there will be some variation in the number
that you measure. Because of this, you shouldn’t use the exact value of the x() method but see if it is in a
certain range.

We will start by using the accelerometer to turn on a light if it is not flat.
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accel = pyb.Accel()
light = pyb.LED(3)
SENSITIVITY = 3

while True:
x = accel.x()
if abs(x) > SENSITIVITY:

light.on()
else:

light.off()

pyb.delay(100)

We create Accel and LED objects, then get the value of the x direction of the accelerometer. If the magnitude
of x is bigger than a certain value SENSITIVITY, then the LED turns on, otherwise it turns off. The loop
has a small pyb.delay() otherwise the LED flashes annoyingly when the value of x is close to SENSITIVITY.
Try running this on the pyboard and tilt the board left and right to make the LED turn on and off.

Exercise: Change the above script so that the blue LED gets brighter the more you tilt the
pyboard. HINT: You will need to rescale the values, intensity goes from 0-255.

Making a spirit level

The example above is only sensitive to the angle in the x direction but if we use the y() value and more
LEDs we can turn the pyboard into a spirit level.

xlights = (pyb.LED(2), pyb.LED(3))
ylights = (pyb.LED(1), pyb.LED(4))

accel = pyb.Accel()
SENSITIVITY = 3

while True:
x = accel.x()
if x > SENSITIVITY:

xlights[0].on()
xlights[1].off()

elif x < -SENSITIVITY:
xlights[1].on()
xlights[0].off()

else:
xlights[0].off()
xlights[1].off()

y = accel.y()
if y > SENSITIVITY:

ylights[0].on()
ylights[1].off()

elif y < -SENSITIVITY:
ylights[1].on()
ylights[0].off()

else:
ylights[0].off()

(����)
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ylights[1].off()

pyb.delay(100)

We start by creating a tuple of LED objects for the x and y directions. Tuples are immutable objects in
python which means they can’t be modified once they are created. We then proceed as before but turn on
a different LED for positive and negative x values. We then do the same for the y direction. This isn’t
particularly sophisticated but it does the job. Run this on your pyboard and you should see different LEDs
turning on depending on how you tilt the board.

5.2.7 Safe mode and factory reset

If something goes wrong with your pyboard, don’t panic! It is almost impossible for you to break the pyboard
by programming the wrong thing.

The first thing to try is to enter safe mode: this temporarily skips execution of boot.py and main.py and
gives default USB settings.

If you have problems with the filesystem you can do a factory reset, which restores the filesystem to its
original state.

Safe mode

To enter safe mode, do the following steps:

1. Connect the pyboard to USB so it powers up.

2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

6. The orange LED should flash quickly 4 times, and then turn off.

7. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can edit
boot.py and main.py to fix any problems.

Entering safe mode is temporary, and does not make any changes to the files on the pyboard.

Factory reset the filesystem

If you pyboard’s filesystem gets corrupted (for example, you forgot to eject/unmount it), or you have some
code in boot.py or main.py which you can’t escape from, then you can reset the filesystem.

Resetting the filesystem deletes all files on the internal pyboard storage (not the SD card), and restores the
files boot.py, main.py, README.txt and pybcdc.inf back to their original state.

To do a factory reset of the filesystem you follow a similar procedure as you did to enter safe mode, but
release USR on green+orange:

1. Connect the pyboard to USB so it powers up.
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2. Hold down the USR switch.

3. While still holding down USR, press and release the RST switch.

4. The LEDs will then cycle green to orange to green+orange and back again.

5. Keep holding down USR until both the green and orange LEDs are lit, and then let go of the USR
switch.

6. The green and orange LEDs should flash quickly 4 times.

7. The red LED will turn on (so red, green and orange are now on).

8. The pyboard is now resetting the filesystem (this takes a few seconds).

9. The LEDs all turn off.

10. You now have a reset filesystem, and are in safe mode.

11. Press and release the RST switch to boot normally.

5.2.8 Making the pyboard act as a USB mouse

The pyboard is a USB device, and can configured to act as a mouse instead of the default USB flash drive.

To do this we must first edit the boot.py file to change the USB configuration. If you have not yet touched
your boot.py file then it will look something like this:

# boot.py -- run on boot-up
# can run arbitrary Python, but best to keep it minimal

import pyb
#pyb.main('main.py') # main script to run after this one
#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device
#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

To enable the mouse mode, uncomment the last line of the file, to make it look like:

pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

If you already changed your boot.py file, then the minimum code it needs to work is:

import pyb
pyb.usb_mode('VCP+HID')

This tells the pyboard to configure itself as a VCP (Virtual COM Port, ie serial port) and HID (human
interface device, in our case a mouse) USB device when it boots up.

Eject/unmount the pyboard drive and reset it using the RST switch. Your PC should now detect the pyboard
as a mouse!

Sending mouse events by hand

To get the py-mouse to do anything we need to send mouse events to the PC. We will first do this manually
using the REPL prompt. Connect to your pyboard using your serial program and type the following:

>>> hid = pyb.USB_HID()
>>> hid.send((0, 10, 0, 0))
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Your mouse should move 10 pixels to the right! In the command above you are sending 4 pieces of information:
button status, x, y and scroll. The number 10 is telling the PC that the mouse moved 10 pixels in the x
direction.

Let’s make the mouse oscillate left and right:

>>> import math
>>> def osc(n, d):
... for i in range(n):
... hid.send((0, int(20 * math.sin(i / 10)), 0, 0))
... pyb.delay(d)
...
>>> osc(100, 50)

The first argument to the function osc is the number of mouse events to send, and the second argument is
the delay (in milliseconds) between events. Try playing around with different numbers.

Exercise: make the mouse go around in a circle.

Making a mouse with the accelerometer

Now lets make the mouse move based on the angle of the pyboard, using the accelerometer. The following
code can be typed directly at the REPL prompt, or put in the main.py file. Here, we’ll put in in main.py
because to do that we will learn how to go into safe mode.

At the moment the pyboard is acting as a serial USB device and an HID (a mouse). So you cannot access
the filesystem to edit your main.py file.

You also can’t edit your boot.py to get out of HID-mode and back to normal mode with a USB drive…

To get around this we need to go into safe mode. This was described in the [safe mode tutorial](tut-reset),
but we repeat the instructions here:

1. Hold down the USR switch.

2. While still holding down USR, press and release the RST switch.

3. The LEDs will then cycle green to orange to green+orange and back again.

4. Keep holding down USR until only the orange LED is lit, and then let go of the USR switch.

5. The orange LED should flash quickly 4 times, and then turn off.

6. You are now in safe mode.

In safe mode, the boot.py and main.py files are not executed, and so the pyboard boots up with default
settings. This means you now have access to the filesystem (the USB drive should appear), and you can
edit main.py. (Leave boot.py as-is, because we still want to go back to HID-mode after we finish editing
main.py.)

In main.py put the following code:

import pyb

switch = pyb.Switch()
accel = pyb.Accel()
hid = pyb.USB_HID()

while not switch():
(����)
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hid.send((0, accel.x(), accel.y(), 0))
pyb.delay(20)

Save your file, eject/unmount your pyboard drive, and reset it using the RST switch. It should now act as
a mouse, and the angle of the board will move the mouse around. Try it out, and see if you can make the
mouse stand still!

Press the USR switch to stop the mouse motion.

You’ll note that the y-axis is inverted. That’s easy to fix: just put a minus sign in front of the y-coordinate
in the hid.send() line above.

Restoring your pyboard to normal

If you leave your pyboard as-is, it’ll behave as a mouse everytime you plug it in. You probably want to change
it back to normal. To do this you need to first enter safe mode (see above), and then edit the boot.py file.
In the boot.py file, comment out (put a # in front of) the line with the VCP+HID setting, so it looks like:

#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse

Save your file, eject/unmount the drive, and reset the pyboard. It is now back to normal operating mode.

5.2.9 The Timers

The pyboard has 14 timers which each consist of an independent counter running at a user-defined frequency.
They can be set up to run a function at specific intervals. The 14 timers are numbered 1 through 14, but 3
is reserved for internal use, and 5 and 6 are used for servo and ADC/DAC control. Avoid using these timers
if possible.

Let’s create a timer object:

>>> tim = pyb.Timer(4)

Now let’s see what we just created:

>>> tim
Timer(4)

The pyboard is telling us that tim is attached to timer number 4, but it’s not yet initialised. So let’s initialise
it to trigger at 10 Hz (that’s 10 times per second):

>>> tim.init(freq=10)

Now that it’s initialised, we can see some information about the timer:

>>> tim
Timer(4, prescaler=624, period=13439, mode=UP, div=1)

The information means that this timer is set to run at the peripheral clock speed divided by 624+1, and it
will count from 0 up to 13439, at which point it triggers an interrupt, and then starts counting again from
0. These numbers are set to make the timer trigger at 10 Hz: the source frequency of the timer is 84MHz
(found by running tim.source_freq()) so we get 84MHz / 625 / 13440 = 10Hz.
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Timer counter

So what can we do with our timer? The most basic thing is to get the current value of its counter:

>>> tim.counter()
21504

This counter will continuously change, and counts up.

Timer callbacks

The next thing we can do is register a callback function for the timer to execute when it triggers (see the
switch tutorial for an introduction to callback functions):

>>> tim.callback(lambda t:pyb.LED(1).toggle())

This should start the red LED flashing right away. It will be flashing at 5 Hz (2 toggle’s are needed for 1
flash, so toggling at 10 Hz makes it flash at 5 Hz). You can change the frequency by re-initialising the timer:

>>> tim.init(freq=20)

You can disable the callback by passing it the value None:

>>> tim.callback(None)

The function that you pass to callback must take 1 argument, which is the timer object that triggered. This
allows you to control the timer from within the callback function.

We can create 2 timers and run them independently:

>>> tim4 = pyb.Timer(4, freq=10)
>>> tim7 = pyb.Timer(7, freq=20)
>>> tim4.callback(lambda t: pyb.LED(1).toggle())
>>> tim7.callback(lambda t: pyb.LED(2).toggle())

Because the callbacks are proper hardware interrupts, we can continue to use the pyboard for other things
while these timers are running.

Making a microsecond counter

You can use a timer to create a microsecond counter, which might be useful when you are doing something
which requires accurate timing. We will use timer 2 for this, since timer 2 has a 32-bit counter (so does
timer 5, but if you use timer 5 then you can’t use the Servo driver at the same time).

We set up timer 2 as follows:

>>> micros = pyb.Timer(2, prescaler=83, period=0x3fffffff)

The prescaler is set at 83, which makes this timer count at 1 MHz. This is because the CPU clock, running
at 168 MHz, is divided by 2 and then by prescaler+1, giving a frequency of 168 MHz/2/(83+1)=1 MHz
for timer 2. The period is set to a large number so that the timer can count up to a large number before
wrapping back around to zero. In this case it will take about 17 minutes before it cycles back to zero.

To use this timer, it’s best to first reset it to 0:
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>>> micros.counter(0)

and then perform your timing:

>>> start_micros = micros.counter()

... do some stuff ...

>>> end_micros = micros.counter()

5.2.10 Inline assembler

Here you will learn how to write inline assembler in MicroPython.

Note: this is an advanced tutorial, intended for those who already know a bit about microcontrollers and
assembly language.

MicroPython includes an inline assembler. It allows you to write assembly routines as a Python function,
and you can call them as you would a normal Python function.

Returning a value

Inline assembler functions are denoted by a special function decorator. Let’s start with the simplest example:

@micropython.asm_thumb
def fun():

movw(r0, 42)

You can enter this in a script or at the REPL. This function takes no arguments and returns the number
42. r0 is a register, and the value in this register when the function returns is the value that is returned.
MicroPython always interprets the r0 as an integer, and converts it to an integer object for the caller.

If you run print(fun()) you will see it print out 42.

Accessing peripherals

For something a bit more complicated, let’s turn on an LED:

@micropython.asm_thumb
def led_on():

movwt(r0, stm.GPIOA)
movw(r1, 1 << 13)
strh(r1, [r0, stm.GPIO_BSRRL])

This code uses a few new concepts:

• stm is a module which provides a set of constants for easy access to the registers of the pyboard’s
microcontroller. Try running import stm and then help(stm) at the REPL. It will give you a list of
all the available constants.

• stm.GPIOA is the address in memory of the GPIOA peripheral. On the pyboard, the red LED is on
port A, pin PA13.
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• movwt moves a 32-bit number into a register. It is a convenience function that turns into 2 thumb
instructions: movw followed by movt. The movt also shifts the immediate value right by 16 bits.

• strh stores a half-word (16 bits). The instruction above stores the lower 16-bits of r1 into the memory
location r0 + stm.GPIO_BSRRL. This has the effect of setting high all those pins on port A for which
the corresponding bit in r0 is set. In our example above, the 13th bit in r0 is set, so PA13 is pulled
high. This turns on the red LED.

Accepting arguments

Inline assembler functions can accept up to 4 arguments. If they are used, they must be named r0, r1, r2
and r3 to reflect the registers and the calling conventions.

Here is a function that adds its arguments:

@micropython.asm_thumb
def asm_add(r0, r1):

add(r0, r0, r1)

This performs the computation r0 = r0 + r1. Since the result is put in r0, that is what is returned. Try
asm_add(1, 2), it should return 3.

Loops

We can assign labels with label(my_label), and branch to them using b(my_label), or a conditional
branch like bgt(my_label).

The following example flashes the green LED. It flashes it r0 times.

@micropython.asm_thumb
def flash_led(r0):

# get the GPIOA address in r1
movwt(r1, stm.GPIOA)

# get the bit mask for PA14 (the pin LED #2 is on)
movw(r2, 1 << 14)

b(loop_entry)

label(loop1)

# turn LED on
strh(r2, [r1, stm.GPIO_BSRRL])

# delay for a bit
movwt(r4, 5599900)
label(delay_on)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_on)

# turn LED off
strh(r2, [r1, stm.GPIO_BSRRH])

(����)
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# delay for a bit
movwt(r4, 5599900)
label(delay_off)
sub(r4, r4, 1)
cmp(r4, 0)
bgt(delay_off)

# loop r0 times
sub(r0, r0, 1)
label(loop_entry)
cmp(r0, 0)
bgt(loop1)

Further reading

For further information about supported instructions of the inline assembler, see the reference documentation.

5.2.11 Power control

pyb.wfi() is used to reduce power consumption while waiting for an event such as an interrupt. You would
use it in the following situation:

while True:
do_some_processing()
pyb.wfi()

Control the frequency using pyb.freq():

pyb.freq(30000000) # set CPU frequency to 30MHz

5.2.12 Tutorials requiring extra components

Controlling hobby servo motors

There are 4 dedicated connection points on the pyboard for connecting up hobby servo motors (see eg
Wikipedia). These motors have 3 wires: ground, power and signal. On the pyboard you can connect them
in the bottom right corner, with the signal pin on the far right. Pins X1, X2, X3 and X4 are the 4 dedicated
servo signal pins.
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In this picture there are male-male double adaptors to connect the servos to the header pins on the pyboard.

The ground wire on a servo is usually the darkest coloured one, either black or dark brown. The power wire
will most likely be red.

The power pin for the servos (labelled VIN) is connected directly to the input power source of the pyboard.
When powered via USB, VIN is powered through a diode by the 5V USB power line. Connect to USB, the
pyboard can power at least 4 small to medium sized servo motors.
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If using a battery to power the pyboard and run servo motors, make sure it is not greater than 6V, since
this is the maximum voltage most servo motors can take. (Some motors take only up to 4.8V, so check what
type you are using.)

Creating a Servo object

Plug in a servo to position 1 (the one with pin X1) and create a servo object using:

>>> servo1 = pyb.Servo(1)

To change the angle of the servo use the angle method:

>>> servo1.angle(45)
>>> servo1.angle(-60)

The angle here is measured in degrees, and ranges from about -90 to +90, depending on the motor. Calling
angle without parameters will return the current angle:

>>> servo1.angle()
-60

Note that for some angles, the returned angle is not exactly the same as the angle you set, due to rounding
errors in setting the pulse width.

You can pass a second parameter to the angle method, which specifies how long to take (in milliseconds) to
reach the desired angle. For example, to take 1 second (1000 milliseconds) to go from the current position
to 50 degrees, use

>>> servo1.angle(50, 1000)

This command will return straight away and the servo will continue to move to the desired angle, and stop
when it gets there. You can use this feature as a speed control, or to synchronise 2 or more servo motors. If
we have another servo motor (servo2 = pyb.Servo(2)) then we can do

>>> servo1.angle(-45, 2000); servo2.angle(60, 2000)

This will move the servos together, making them both take 2 seconds to reach their final angles.

Note: the semicolon between the 2 expressions above is used so that they are executed one after the other
when you press enter at the REPL prompt. In a script you don’t need to do this, you can just write them
one line after the other.

Continuous rotation servos

So far we have been using standard servos that move to a specific angle and stay at that angle. These
servo motors are useful to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor
has a variable resistor (potentiometer) which measures the current angle and applies power to the motor
proportional to how far it is from the desired angle. The desired angle is set by the width of a high-pulse
on the servo signal wire. A pulse width of 1500 microsecond corresponds to the centre position (0 degrees).
The pulses are sent at 50 Hz, ie 50 pulses per second.

You can also get continuous rotation servo motors which turn continuously clockwise or counterclockwise.
The direction and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500
microseconds corresponds to a stopped motor. A pulse width smaller or larger than this means rotate one
way or the other, at a given speed.
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On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using angle
you can set the speed. But to make it easier to understand what is intended, there is another method called
speed which sets the speed:

>>> servo1.speed(30)

speed has the same functionality as angle: you can get the speed, set it, and set it with a time to reach the
final speed.

>>> servo1.speed()
30
>>> servo1.speed(-20)
>>> servo1.speed(0, 2000)

The final command above will set the motor to stop, but take 2 seconds to do it. This is essentially a control
over the acceleration of the continuous servo.

A servo speed of 100 (or -100) is considered maximum speed, but actually you can go a bit faster than that,
depending on the particular motor.

The only difference between the angle and speed methods (apart from the name) is the way the input
numbers (angle or speed) are converted to a pulse width.

Calibration

The conversion from angle or speed to pulse width is done by the servo object using its calibration values.
To get the current calibration, use

>>> servo1.calibration()
(640, 2420, 1500, 2470, 2200)

There are 5 numbers here, which have meaning:

1. Minimum pulse width; the smallest pulse width that the servo accepts.

2. Maximum pulse width; the largest pulse width that the servo accepts.

3. Centre pulse width; the pulse width that puts the servo at 0 degrees or 0 speed.

4. The pulse width corresponding to 90 degrees. This sets the conversion in the method angle of angle
to pulse width.

5. The pulse width corresponding to a speed of 100. This sets the conversion in the method speed of
speed to pulse width.

You can recalibrate the servo (change its default values) by using:

>>> servo1.calibration(700, 2400, 1510, 2500, 2000)

Of course, you would change the above values to suit your particular servo motor.

Fading LEDs

In addition to turning LEDs on and off, it is also possible to control the brightness of an LED using Pulse-
Width Modulation (PWM), a common technique for obtaining variable output from a digital pin. This
allows us to fade an LED:
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Components

You will need:

• Standard 5 or 3 mm LED

• 100 Ohm resistor

• Wires

• Breadboard (optional, but makes things easier)

Connecting Things Up

For this tutorial, we will use the X1 pin. Connect one end of the resistor to X1, and the other end to the
anode of the LED, which is the longer leg. Connect the cathode of the LED to ground.

Code

By examining the Quick reference for the pyboard, we see that X1 is connected to channel 1 of timer 5 (TIM5
CH1). Therefore we will first create a Timer object for timer 5, then create a TimerChannel object for channel
1:

from pyb import Timer
from time import sleep

# timer 5 will be created with a frequency of 100 Hz
(����)
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tim = pyb.Timer(5, freq=100)
tchannel = tim.channel(1, Timer.PWM, pin=pyb.Pin.board.X1, pulse_width=0)

Brightness of the LED in PWM is controlled by controlling the pulse-width, that is the amount of time the
LED is on every cycle. With a timer frequency of 100 Hz, each cycle takes 0.01 second, or 10 ms.

To achieve the fading effect shown at the beginning of this tutorial, we want to set the pulse-width to a
small value, then slowly increase the pulse-width to brighten the LED, and start over when we reach some
maximum brightness:

# maximum and minimum pulse-width, which corresponds to maximum
# and minimum brightness
max_width = 200000
min_width = 20000

# how much to change the pulse-width by each step
wstep = 1500
cur_width = min_width

while True:
tchannel.pulse_width(cur_width)

# this determines how often we change the pulse-width. It is
# analogous to frames-per-second
sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = min_width

Breathing Effect

If we want to have a breathing effect, where the LED fades from dim to bright then bright to dim, then
we simply need to reverse the sign of wstep when we reach maximum brightness, and reverse it again at
minimum brightness. To do this we modify the while loop to be:

while True:
tchannel.pulse_width(cur_width)

sleep(0.01)

cur_width += wstep

if cur_width > max_width:
cur_width = max_width
wstep *= -1

elif cur_width < min_width:
cur_width = min_width
wstep *= -1
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Advanced Exercise

You may have noticed that the LED brightness seems to fade slowly, but increases quickly. This is because
our eyes interprets brightness logarithmically (Weber’s Law ), while the LED’s brightness changes linearly,
that is by the same amount each time. How do you solve this problem? (Hint: what is the opposite of the
logarithmic function?)

Addendum

We could have also used the digital-to-analog converter (DAC) to achieve the same effect. The PWM method
has the advantage that it drives the LED with the same current each time, but for different lengths of time.
This allows better control over the brightness, because LEDs do not necessarily exhibit a linear relationship
between the driving current and brightness.

The LCD and touch-sensor skin

Soldering and using the LCD and touch-sensor skin.

The following video shows how to solder the headers onto the LCD skin. At the end of the video, it shows
you how to correctly connect the LCD skin to the pyboard.

For circuit schematics and datasheets for the components on the skin see The pyboard hardware.
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Using the LCD

To get started using the LCD, try the following at the MicroPython prompt. Make sure the LCD skin is
attached to the pyboard as pictured at the top of this page.

>>> import pyb
>>> lcd = pyb.LCD('X')
>>> lcd.light(True)
>>> lcd.write('Hello uPy!\n')

You can make a simple animation using the code:

import pyb
lcd = pyb.LCD('X')
lcd.light(True)
for x in range(-80, 128):

lcd.fill(0)
lcd.text('Hello uPy!', x, 10, 1)
lcd.show()
pyb.delay(25)

Using the touch sensor

To read the touch-sensor data you need to use the I2C bus. The MPR121 capacitive touch sensor has address
90.

To get started, try:

>>> import pyb
>>> i2c = pyb.I2C(1, pyb.I2C.MASTER)
>>> i2c.mem_write(4, 90, 0x5e)
>>> touch = i2c.mem_read(1, 90, 0)[0]

The first line above makes an I2C object, and the second line enables the 4 touch sensors. The third line
reads the touch status and the touch variable holds the state of the 4 touch buttons (A, B, X, Y).

There is a simple driver here which allows you to set the threshold and debounce parameters, and easily
read the touch status and electrode voltage levels. Copy this script to your pyboard (either flash or SD card,
in the top directory or lib/ directory) and then try:

>>> import pyb
>>> import mpr121
>>> m = mpr121.MPR121(pyb.I2C(1, pyb.I2C.MASTER))
>>> for i in range(100):
... print(m.touch_status())
... pyb.delay(100)
...

This will continuously print out the touch status of all electrodes. Try touching each one in turn.

Note that if you put the LCD skin in the Y-position, then you need to initialise the I2C bus using:

>>> m = mpr121.MPR121(pyb.I2C(2, pyb.I2C.MASTER))

There is also a demo which uses the LCD and the touch sensors together, and can be found here.
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The AMP audio skin

Soldering and using the AMP audio skin.

The following video shows how to solder the headers, microphone and speaker onto the AMP skin.

For circuit schematics and datasheets for the components on the skin see The pyboard hardware.

Example code

The AMP skin has a speaker which is connected to DAC(1) via a small power amplifier. The volume of the
amplifier is controlled by a digital potentiometer, which is an I2C device with address 46 on the IC2(1) bus.

To set the volume, define the following function:

import pyb
def volume(val):

pyb.I2C(1, pyb.I2C.MASTER).mem_write(val, 46, 0)

Then you can do:

>>> volume(0) # minimum volume
>>> volume(127) # maximum volume

To play a sound, use the write_timed method of the DAC object. For example:

import math
from pyb import DAC

# create a buffer containing a sine-wave
buf = bytearray(100)
for i in range(len(buf)):

buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))

(����)

208 Chapter 5. Quick reference for the pyboard



MicroPython Documentation, �� 1.11

(���)

# output the sine-wave at 400Hz
dac = DAC(1)
dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

You can also play WAV files using the Python wave module. You can get the wave module here and you
will also need the chunk module available here. Put these on your pyboard (either on the flash or the SD
card in the top-level directory). You will need an 8-bit WAV file to play, such as this one, or to convert any
file you have with the command:

avconv -i original.wav -ar 22050 -codec pcm_u8 test.wav

Then you can do:

>>> import wave
>>> from pyb import DAC
>>> dac = DAC(1)
>>> f = wave.open('test.wav')
>>> dac.write_timed(f.readframes(f.getnframes()), f.getframerate())

This should play the WAV file. Note that this will read the whole file into RAM so it has to be small enough
to fit in it.

To play larger wave files you will have to use the micro-SD card to store it. Also the file must be read and
sent to the DAC in small chunks that will fit the RAM limit of the microcontroller. Here is an example
function that can play 8-bit wave files with up to 16kHz sampling:

import wave
from pyb import DAC
from pyb import delay
dac = DAC(1)

def play(filename):
f = wave.open(filename, 'r')
total_frames = f.getnframes()
framerate = f.getframerate()

for position in range(0, total_frames, framerate):
f.setpos(position)
dac.write_timed(f.readframes(framerate), framerate)
delay(1000)

This function reads one second worth of data and sends it to DAC. It then waits one second and moves the
file cursor to the new position to read the next second of data in the next iteration of the for-loop. It plays
one second of audio at a time every one second.

The LCD160CR skin

This tutorial shows how to get started using the LCD160CR skin.
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For detailed documentation of the driver for the display see the lcd160cr module.

Plugging in the display

The display can be plugged directly into a pyboard (all pyboard versions are supported). You plug the
display onto the top of the pyboard either in the X or Y positions. The display should cover half of the
pyboard. See the picture above for how to achieve this; the left half of the picture shows the X position, and
the right half shows the Y position.

Getting the driver

You can control the display directly using a power/enable pin and an I2C bus, but it is much more convenient
to use the driver provided by the lcd160cr module. This driver is included in recent version of the pyboard
firmware (see here). You can also find the driver in the GitHub repository here, and to use this version

210 Chapter 5. Quick reference for the pyboard

http://micropython.org/download
https://github.com/micropython/micropython/blob/master/drivers/display/lcd160cr.py


MicroPython Documentation, �� 1.11

you will need to copy the file to your board, into a directory that is searched by import (usually the lib/
directory).

Once you have the driver installed you need to import it to use it:

import lcd160cr

Testing the display

There is a test program which you can use to test the features of the display, and which also serves as a basis
to start creating your own code that uses the LCD. This test program is included in recent versions of the
pyboard firmware and is also available on GitHub here.

To run the test from the MicroPython prompt do:

>>> import lcd160cr_test

It will then print some brief instructions. You will need to know which position your display is connected to
(X or Y) and then you can run (assuming you have the display on position X):

>>> test_all('X')

Drawing some graphics

You must first create an LCD160CR object which will control the display. Do this using:

>>> import lcd160cr
>>> lcd = lcd160cr.LCD160CR('X')

This assumes your display is connected in the X position. If it’s in the Y position then use lcd = lcd160cr.
LCD160CR('Y') instead.

To erase the screen and draw a line, try:

>>> lcd.set_pen(lcd.rgb(255, 0, 0), lcd.rgb(64, 64, 128))
>>> lcd.erase()
>>> lcd.line(10, 10, 50, 80)

The next example draws random rectangles on the screen. You can copy-and-paste it into the MicroPython
prompt by first pressing “Ctrl-E” at the prompt, then “Ctrl-D” once you have pasted the text.

from random import randint
for i in range(1000):

fg = lcd.rgb(randint(128, 255), randint(128, 255), randint(128, 255))
bg = lcd.rgb(randint(0, 128), randint(0, 128), randint(0, 128))
lcd.set_pen(fg, bg)
lcd.rect(randint(0, lcd.w), randint(0, lcd.h), randint(10, 40), randint(10, 40))

Using the touch sensor

The display includes a resistive touch sensor that can report the position (in pixels) of a single force-based
touch on the screen. To see if there is a touch on the screen use:

5.2. MicroPython tutorial for the pyboard 211

https://github.com/micropython/micropython/blob/master/drivers/display/lcd160cr_test.py


MicroPython Documentation, �� 1.11

>>> lcd.is_touched()

This will return either False or True. Run the above command while touching the screen to see the result.

To get the location of the touch you can use the method:

>>> lcd.get_touch()

This will return a 3-tuple, with the first entry being 0 or 1 depending on whether there is currently anything
touching the screen (1 if there is), and the second and third entries in the tuple being the x and y coordinates
of the current (or most recent) touch.

Directing the MicroPython output to the display

The display supports input from a UART and implements basic VT100 commands, which means it can be
used as a simple, general purpose terminal. Let’s set up the pyboard to redirect its output to the display.

First you need to create a UART object:

>>> import pyb
>>> uart = pyb.UART('XA', 115200)

This assumes your display is connected to position X. If it’s on position Y then use uart = pyb.UART('YA',
115200) instead.

Now, connect the REPL output to this UART:

>>> pyb.repl_uart(uart)

From now on anything you type at the MicroPython prompt, and any output you receive, will appear on
the display.

No set-up commands are required for this mode to work and you can use the display to monitor the output
of any UART, not just from the pyboard. All that is needed is for the display to have power, ground and
the power/enable pin driven high. Then any characters on the display’s UART input will be printed to
the screen. You can adjust the UART baudrate from the default of 115200 using the set_uart_baudrate
method.

5.2.13 Tips, tricks and useful things to know

Debouncing a pin input

A pin used as input from a switch or other mechanical device can have a lot of noise on it, rapidly changing
from low to high when the switch is first pressed or released. This noise can be eliminated using a capacitor
(a debouncing circuit). It can also be eliminated using a simple function that makes sure the value on the
pin is stable.

The following function does just this. It gets the current value of the given pin, and then waits for the value
to change. The new pin value must be stable for a continuous 20ms for it to register the change. You can
adjust this time (to say 50ms) if you still have noise.

import pyb

def wait_pin_change(pin):
(����)
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# wait for pin to change value
# it needs to be stable for a continuous 20ms
cur_value = pin.value()
active = 0
while active < 20:

if pin.value() != cur_value:
active += 1

else:
active = 0

pyb.delay(1)

Use it something like this:

import pyb

pin_x1 = pyb.Pin('X1', pyb.Pin.IN, pyb.Pin.PULL_DOWN)
while True:

wait_pin_change(pin_x1)
pyb.LED(4).toggle()

Making a UART - USB pass through

It’s as simple as:

import pyb
import select

def pass_through(usb, uart):
usb.setinterrupt(-1)
while True:

select.select([usb, uart], [], [])
if usb.any():

uart.write(usb.read(256))
if uart.any():

usb.write(uart.read(256))

pass_through(pyb.USB_VCP(), pyb.UART(1, 9600, timeout=0))

5.3 General board control

See pyb.

import pyb

pyb.repl_uart(pyb.UART(1, 9600)) # duplicate REPL on UART(1)
pyb.wfi() # pause CPU, waiting for interrupt
pyb.freq() # get CPU and bus frequencies
pyb.freq(60000000) # set CPU freq to 60MHz
pyb.stop() # stop CPU, waiting for external interrupt
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5.4 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get value of millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

5.5 Internal LEDs

See pyb.LED.

from pyb import LED

led = LED(1) # 1=red, 2=green, 3=yellow, 4=blue
led.toggle()
led.on()
led.off()

# LEDs 3 and 4 support PWM intensity (0-255)
LED(4).intensity() # get intensity
LED(4).intensity(128) # set intensity to half

5.6 Internal switch

See pyb.Switch.

from pyb import Switch

sw = Switch()
sw.value() # returns True or False
sw.callback(lambda: pyb.LED(1).toggle())

5.7 Pins and GPIO

See pyb.Pin.

from pyb import Pin

p_out = Pin('X1', Pin.OUT_PP)
p_out.high()
p_out.low()

(����)

214 Chapter 5. Quick reference for the pyboard



MicroPython Documentation, �� 1.11

(���)

p_in = Pin('X2', Pin.IN, Pin.PULL_UP)
p_in.value() # get value, 0 or 1

5.8 Servo control

See pyb.Servo.

from pyb import Servo

s1 = Servo(1) # servo on position 1 (X1, VIN, GND)
s1.angle(45) # move to 45 degrees
s1.angle(-60, 1500) # move to -60 degrees in 1500ms
s1.speed(50) # for continuous rotation servos

5.9 External interrupts

See pyb.ExtInt.

from pyb import Pin, ExtInt

callback = lambda e: print("intr")
ext = ExtInt(Pin('Y1'), ExtInt.IRQ_RISING, Pin.PULL_NONE, callback)

5.10 Timers

See pyb.Timer.

from pyb import Timer

tim = Timer(1, freq=1000)
tim.counter() # get counter value
tim.freq(0.5) # 0.5 Hz
tim.callback(lambda t: pyb.LED(1).toggle())

5.11 RTC (real time clock)

See pyb.RTC

from pyb import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time
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5.12 PWM (pulse width modulation)

See pyb.Pin and pyb.Timer.

from pyb import Pin, Timer

p = Pin('X1') # X1 has TIM2, CH1
tim = Timer(2, freq=1000)
ch = tim.channel(1, Timer.PWM, pin=p)
ch.pulse_width_percent(50)

5.13 ADC (analog to digital conversion)

See pyb.Pin and pyb.ADC .

from pyb import Pin, ADC

adc = ADC(Pin('X19'))
adc.read() # read value, 0-4095

5.14 DAC (digital to analog conversion)

See pyb.Pin and pyb.DAC .

from pyb import Pin, DAC

dac = DAC(Pin('X5'))
dac.write(120) # output between 0 and 255

5.15 UART (serial bus)

See pyb.UART .

from pyb import UART

uart = UART(1, 9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

5.16 SPI bus

See pyb.SPI .
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from pyb import SPI

spi = SPI(1, SPI.MASTER, baudrate=200000, polarity=1, phase=0)
spi.send('hello')
spi.recv(5) # receive 5 bytes on the bus
spi.send_recv('hello') # send and receive 5 bytes

5.17 I2C bus

Hardware I2C is available on the X and Y halves of the pyboard via I2C('X') and I2C('Y'). Alternatively
pass in the integer identifier of the peripheral, eg I2C(1). Software I2C is also available by explicitly
specifying the scl and sda pins instead of the bus name. For more details see machine.I2C .

from machine import I2C

i2c = I2C('X', freq=400000) # create hardware I2c object
i2c = I2C(scl='X1', sda='X2', freq=100000) # create software I2C object

i2c.scan() # returns list of slave addresses
i2c.writeto(0x42, 'hello') # write 5 bytes to slave with address 0x42
i2c.readfrom(0x42, 5) # read 5 bytes from slave

i2c.readfrom_mem(0x42, 0x10, 2) # read 2 bytes from slave 0x42, slave memory 0x10
i2c.writeto_mem(0x42, 0x10, 'xy') # write 2 bytes to slave 0x42, slave memory 0x10

Note: for legacy I2C support see pyb.I2C .

5.18 CAN bus (controller area network)

See pyb.CAN .

from pyb import CAN

can = CAN(1, CAN.LOOPBACK)
can.setfilter(0, CAN.LIST16, 0, (123, 124, 125, 126))
can.send('message!', 123) # send a message with id 123
can.recv(0) # receive message on FIFO 0

5.19 Internal accelerometer

See pyb.Accel.

from pyb import Accel

accel = Accel()
print(accel.x(), accel.y(), accel.z(), accel.tilt())
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CHAPTER 6

Quick reference for the ESP8266

The Adafruit Feather HUZZAH board (image attribution: Adafruit).

Below is a quick reference for ESP8266-based boards. If it is your first time working with this board please
consider reading the following sections first:

6.1 General information about the ESP8266 port

ESP8266 is a popular WiFi-enabled System-on-Chip (SoC) by Espressif Systems.
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6.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry the ESP8266 chip. MicroPy-
thon tries to provide a generic port which would run on as many boards/modules as possible, but there may
be limitations. Adafruit Feather HUZZAH board is taken as a reference board for the port (for example,
testing is performed on it). If you have another board, please make sure you have a datasheet, schematics
and other reference materials for your board handy to look up various aspects of your board functioning.

To make a generic ESP8266 port and support as many boards as possible, the following design and imple-
mentation decision were made:

• GPIO pin numbering is based on ESP8266 chip numbering, not some “logical” numbering of a particular
board. Please have the manual/pin diagram of your board at hand to find correspondence between
your board pins and actual ESP8266 pins. We also encourage users of various boards to share this
mapping via MicroPython forum, with the idea to collect community-maintained reference materials
eventually.

• All pins which make sense to support, are supported by MicroPython (for example, pins which are
used to connect SPI flash are not exposed, as they’re unlikely useful for anything else, and operating
on them will lead to board lock-up). However, any particular board may expose only subset of pins.
Consult your board reference manual.

• Some boards may lack external pins/internal connectivity to support ESP8266 deepsleep mode.

6.1.2 Technical specifications and SoC datasheets

The datasheets and other reference material for ESP8266 chip are available from the vendor site: http:
//bbs.espressif.com/viewtopic.php?f=67&t=225 . They are the primary reference for the chip technical
specifications, capabilities, operating modes, internal functioning, etc.

For your convenience, some of technical specifications are provided below:

• Architecture: Xtensa lx106

• CPU frequency: 80MHz overclockable to 160MHz

• Total RAM available: 96KB (part of it reserved for system)

• BootROM: 64KB

• Internal FlashROM: None

• External FlashROM: code and data, via SPI Flash. Normal sizes 512KB-4MB.

• GPIO: 16 + 1 (GPIOs are multiplexed with other functions, including external FlashROM, UART,
deep sleep wake-up, etc.)

• UART: One RX/TX UART (no hardware handshaking), one TX-only UART.

• SPI: 2 SPI interfaces (one used for FlashROM).

• I2C: No native external I2C (bitbang implementation available on any pins).

• I2S: 1.

• Programming: using BootROM bootloader from UART. Due to external FlashROM and always-
available BootROM bootloader, ESP8266 is not brickable.
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6.1.3 Scarcity of runtime resources

ESP8266 has very modest resources (first of all, RAM memory). So, please avoid allocating too big container
objects (lists, dictionaries) and buffers. There is also no full-fledged OS to keep track of resources and
automatically clean them up, so that’s the task of a user/user application: please be sure to close open files,
sockets, etc. as soon as possible after use.

6.1.4 Boot process

On boot, MicroPython EPS8266 port executes _boot.py script from internal frozen modules. It mounts
filesystem in FlashROM, or if it’s not available, performs first-time setup of the module and creates the
filesystem. This part of the boot process is considered fixed, and not available for customization for end
users (even if you build from source, please refrain from changes to it; customization of early boot process
is available only to advanced users and developers, who can diagnose themselves any issues arising from
modifying the standard process).

Once the filesystem is mounted, boot.py is executed from it. The standard version of this file is created
during first-time module set up and has commands to start a WebREPL daemon (disabled by default,
configurable with webrepl_setup module), etc. This file is customizable by end users (for example, you
may want to set some parameters or add other services which should be run on a module start-up). But
keep in mind that incorrect modifications to boot.py may still lead to boot loops or lock ups, requiring to
reflash a module from scratch. (In particular, it’s recommended that you use either webrepl_setup module
or manual editing to configure WebREPL, but not both).

As a final step of boot procedure, main.py is executed from filesystem, if exists. This file is a hook to start up
a user application each time on boot (instead of going to REPL). For small test applications, you may name
them directly as main.py, and upload to module, but instead it’s recommended to keep your application(s)
in separate files, and have just the following in main.py:

import my_app
my_app.main()

This will allow to keep the structure of your application clear, as well as allow to install multiple applications
on a board, and switch among them.

6.1.5 Known Issues

Real-time clock

RTC in ESP8266 has very bad accuracy, drift may be seconds per minute. As a workaround, to measure
short enough intervals you can use utime.time(), etc. functions, and for wall clock time, synchronize from
the net using included ntptime.py module.

Due to limitations of the ESP8266 chip the internal real-time clock (RTC) will overflow every 7:45h. If a
long-term working RTC time is required then time() or localtime() must be called at least once within 7
hours. MicroPython will then handle the overflow.

Sockets and WiFi buffers overflow

Socket instances remain active until they are explicitly closed. This has two consequences. Firstly they
occupy RAM, so an application which opens sockets without closing them may eventually run out of memory.
Secondly not properly closed socket can cause the low-level part of the vendor WiFi stack to emit Lmac errors.
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This occurs if data comes in for a socket and is not processed in a timely manner. This can overflow the
WiFi stack input queue and lead to a deadlock. The only recovery is by a hard reset.

The above may also happen after an application terminates and quits to the REPL for any reason including
an exception. Subsequent arrival of data provokes the failure with the above error message repeatedly issued.
So, sockets should be closed in any case, regardless whether an application terminates successfully or by an
exeption, for example using try/finally:

sock = socket(...)
try:

# Use sock
finally:

sock.close()

SSL/TLS limitations

ESP8266 uses axTLS library, which is one of the smallest TLS libraries with the compatible licensing.
However, it also has some known issues/limitations:

1. No support for Diffie-Hellman (DH) key exchange and Elliptic-curve cryptography (ECC). This means
it can’t work with sites which force the use of these features (it works ok with classic RSA certificates).

2. Half-duplex communication nature. axTLS uses a single buffer for both sending and receiving, which
leads to considerable memory saving and works well with protocols like HTTP. But there may be
problems with protocols which don’t follow classic request-response model.

Besides axTLS own limitations, the configuration used for MicroPython is highly optimized for code size,
which leads to additional limitations (these may be lifted in the future):

3. Optimized RSA algorithms are not enabled, which may lead to slow SSL handshakes.

4. Stored sessions are not supported (may allow faster repeated connections to the same site in some
circumstances).

Besides axTLS specific limitations described above, there’s another generic limitation with usage of TLS on
the low-memory devices:

5. The TLS standard specifies the maximum length of the TLS record (unit of TLS communication, the
entire record must be buffered before it can be processed) as 16KB. That’s almost half of the available
ESP8266 memory, and inside a more or less advanced application would be hard to allocate due to
memory fragmentation issues. As a compromise, a smaller buffer is used, with the idea that the most
interesting usage for SSL would be accessing various REST APIs, which usually require much smaller
messages. The buffers size is on the order of 5KB, and is adjusted from time to time, taking as a
reference being able to access https://google.com . The smaller buffer hower means that some sites
can’t be accessed using it, and it’s not possible to stream large amounts of data.

There are also some not implemented features specifically in MicroPython’s ussl module based on axTLS:

6. Certificates are not validated (this may make connections susceptible to man-in-the-middle attacks).

7. There is no support for client certificates (scheduled to be fixed in 1.9.4 release).

6.2 MicroPython tutorial for ESP8266

This tutorial is intended to get you started using MicroPython on the ESP8266 system-on-a-chip. If it is
your first time it is recommended to follow the tutorial through in the order below. Otherwise the sections
are mostly self contained, so feel free to skip to those that interest you.
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The tutorial does not assume that you know Python, but it also does not attempt to explain any of the
details of the Python language. Instead it provides you with commands that are ready to run, and hopes
that you will gain a bit of Python knowledge along the way. To learn more about Python itself please refer
to https://www.python.org.

6.2.1 Getting started with MicroPython on the ESP8266

Using MicroPython is a great way to get the most of your ESP8266 board. And vice versa, the ESP8266 chip
is a great platform for using MicroPython. This tutorial will guide you through setting up MicroPython,
getting a prompt, using WebREPL, connecting to the network and communicating with the Internet, using
the hardware peripherals, and controlling some external components.

Let’s get started!

Requirements

The first thing you need is a board with an ESP8266 chip. The MicroPython software supports the ESP8266
chip itself and any board should work. The main characteristic of a board is how much flash it has, how the
GPIO pins are connected to the outside world, and whether it includes a built-in USB-serial convertor to
make the UART available to your PC.

The minimum requirement for flash size is 1Mbyte. There is also a special build for boards with 512KB,
but it is highly limited comparing to the normal build: there is no support for filesystem, and thus features
which depend on it won’t work (WebREPL, upip, etc.). As such, 512KB build will be more interesting for
users who build from source and fine-tune parameters for their particular application.

Names of pins will be given in this tutorial using the chip names (eg GPIO0) and it should be straightforward
to find which pin this corresponds to on your particular board.

Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to
your PC. Otherwise you will need to power it directly. Please refer to the documentation for your board for
further details.

Getting the firmware

The first thing you need to do is download the most recent MicroPython firmware .bin file to load onto your
ESP8266 device. You can download it from the MicroPython downloads page. From here, you have 3 main
choices

• Stable firmware builds for 1024kb modules and above.

• Daily firmware builds for 1024kb modules and above.

• Daily firmware builds for 512kb modules.

If you are just starting with MicroPython, the best bet is to go for the Stable firmware builds. If you are an
advanced, experienced MicroPython ESP8266 user who would like to follow development closely and help
with testing new features, there are daily builds (note: you actually may need some development experience,
e.g. being ready to follow git history to know what new changes and features were introduced).

Support for 512kb modules is provided on a feature preview basis. For end users, it’s recommended to use
modules with flash of 1024kb or more. As such, only daily builds for 512kb modules are provided.
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Deploying the firmware

Once you have the MicroPython firmware (compiled code), you need to load it onto your ESP8266 device.
There are two main steps to do this: first you need to put your device in boot-loader mode, and second you
need to copy across the firmware. The exact procedure for these steps is highly dependent on the particular
board and you will need to refer to its documentation for details.

If you have a board that has a USB connector, a USB-serial convertor, and has the DTR and RTS pins
wired in a special way then deploying the firmware should be easy as all steps can be done automatically.
Boards that have such features include the Adafruit Feather HUZZAH and NodeMCU boards.

For best results it is recommended to first erase the entire flash of your device before putting on new
MicroPython firmware.

Currently we only support esptool.py to copy across the firmware. You can find this tool here: https:
//github.com/espressif/esptool/, or install it using pip:

pip install esptool

Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer). An older version (at least
1.2.1 is needed) works fine but will require Python 2.7.

Any other flashing program should work, so feel free to try them out or refer to the documentation for your
board to see its recommendations.

Using esptool.py you can erase the flash with the command:

esptool.py --port /dev/ttyUSB0 erase_flash

And then deploy the new firmware using:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect 0 esp8266-
↪→20170108-v1.8.7.bin

You might need to change the “port” setting to something else relevant for your PC. You may also need
to reduce the baudrate if you get errors when flashing (eg down to 115200). The filename of the firmware
should also match the file that you have.

For some boards with a particular FlashROM configuration (e.g. some variants of a NodeMCU board) you
may need to use the following command to deploy the firmware (note the -fm dio option):

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect -fm dio 0␣
↪→esp8266-20170108-v1.8.7.bin

If the above commands run without error then MicroPython should be installed on your board!

Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over UART0
(GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial convertor, depending on your board.
The baudrate is 115200. The next part of the tutorial will discuss the prompt in more detail.

WiFi

After a fresh install and boot the device configures itself as a WiFi access point (AP) that you can connect
to. The ESSID is of the form MicroPython-xxxxxx where the x’s are replaced with part of the MAC address
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of your device (so will be the same everytime, and most likely different for all ESP8266 chips). The password
for the WiFi is micropythoN (note the upper-case N). Its IP address will be 192.168.4.1 once you connect to
its network. WiFi configuration will be discussed in more detail later in the tutorial.

Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are trou-
bleshooting recommendations:

• Be aware of and try to exclude hardware problems. There are 2 common problems: bad power
source quality and worn-out/defective FlashROM. Speaking of power source, not just raw amperage
is important, but also low ripple and noise/EMI in general. If you experience issues with self-made
or wall-wart style power supply, try USB power from a computer. Unearthed power supplies are also
known to cause problems as they source of increased EMI (electromagnetic interference) - at the very
least, and may lead to electrical devices breakdown. So, you are advised to avoid using unearthed
power connections when working with ESP8266 and other boards. In regard to FlashROM hardware
problems, there are independent (not related to MicroPython in any way) reports (e.g.) that on some
ESP8266 modules, FlashROM can be programmed as little as 20 times before programming errors
occur. This is much less than 100,000 programming cycles cited for FlashROM chips of a type used
with ESP8266 by reputable vendors, which points to either production rejects, or second-hand worn-
out flash chips to be used on some (apparently cheap) modules/boards. You may want to use your best
judgement about source, price, documentation, warranty, post-sales support for the modules/boards
you purchase.

• The flashing instructions above use flashing speed of 460800 baud, which is good compromise between
speed and stability. However, depending on your module/board, USB-UART convertor, cables, host
OS, etc., the above baud rate may be too high and lead to errors. Try a more common 115200 baud
rate instead in such cases.

• If lower baud rate didn’t help, you may want to try older version of esptool.py, which had a different
programming algorithm:

pip install esptool==1.0.1

This version doesn’t support --flash_size=detect option, so you will need to specify FlashROM size
explicitly (in megabits). It also requires Python 2.7, so you may need to use pip2 instead of pip in
the command above.

• The --flash_size option in the commands above is mandatory. Omitting it will lead to a corrupted
firmware.

• To catch incorrect flash content (e.g. from a defective sector on a chip), add --verify switch to the
commands above.

• Additionally, you can check the firmware integrity from a MicroPython REPL prompt (assuming you
were able to flash it and --verify option doesn’t report errors):

import esp
esp.check_fw()

If the last output value is True, the firmware is OK. Otherwise, it’s corrupted and need to be reflashed
correctly.

• If you experience any issues with another flashing application (not esptool.py), try esptool.py, it is a
generally accepted flashing application in the ESP8266 community.

6.2. MicroPython tutorial for ESP8266 225

http://internetofhomethings.com/homethings/?p=538


MicroPython Documentation, �� 1.11

• If you still experience problems with even flashing the firmware, please refer to esptool.py project
page, https://github.com/espressif/esptool for additional documentation and bug tracker where you
can report problems.

• If you are able to flash firmware, but --verify option or esp.check_fw() return errors even after
multiple retries, you may have a defective FlashROM chip, as explained above.

6.2.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt
that you can access on the ESP8266. Using the REPL is by far the easiest way to test out your code and
run commands.

There are two ways to access the REPL: either via a wired connection through the UART serial port, or via
WiFi.

REPL over the serial port

The REPL is always available on the UART0 serial peripheral, which is connected to the pins GPIO1 for
TX and GPIO3 for RX. The baudrate of the REPL is 115200. If your board has a USB-serial convertor on
it then you should be able to access the REPL directly from your PC. Otherwise you will need to have a
way of communicating with the UART.

To access the prompt over USB-serial you need to use a terminal emulator program. On Windows TeraTerm
is a good choice, on Mac you can use the built-in screen program, and Linux has picocom and minicom. Of
course, there are many other terminal programs that will work, so pick your favourite!

For example, on Linux you can try running:

picocom /dev/ttyUSB0 -b115200

Once you have made the connection over the serial port you can test if it is working by hitting enter a few
times. You should see the Python REPL prompt, indicated by >>>.

WebREPL - a prompt over WiFi

WebREPL allows you to use the Python prompt over WiFi, connecting through a browser. The latest
versions of Firefox and Chrome are supported.

For your convenience, WebREPL client is hosted at http://micropython.org/webrepl . Alternatively, you
can install it locally from the the GitHub repository https://github.com/micropython/webrepl .

Before connecting to WebREPL, you should set a password and enable it via a normal serial connection.
Initial versions of MicroPython for ESP8266 came with WebREPL automatically enabled on the boot and
with the ability to set a password via WiFi on the first connection, but as WebREPL was becoming more
widely known and popular, the initial setup has switched to a wired connection for improved security:

import webrepl_setup

Follow the on-screen instructions and prompts. To make any changes active, you will need to reboot your
device.

To use WebREPL connect your computer to the ESP8266’s access point (MicroPython-xxxxxx, see the
previous section about this). If you have already reconfigured your ESP8266 to connect to a router then you
can skip this part.
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Once you are on the same network as the ESP8266 you click the “Connect” button (if you are connecting via
a router then you may need to change the IP address, by default the IP address is correct when connected
to the ESP8266’s access point). If the connection succeeds then you should see a password prompt.

Once you type the password configured at the setup step above, press Enter once more and you should get
a prompt looking like >>>. You can now start typing Python commands!

Using the REPL

Once you have a prompt you can start experimenting! Anything you type at the prompt will be executed
after you press the Enter key. MicroPython will run the code that you enter and print the result (if there is
one). If there is an error with the text that you enter then an error message is printed.

Try typing the following at the prompt:

>>> print('hello esp8266!')
hello esp8266!

Note that you shouldn’t type the >>> arrows, they are there to indicate that you should type the text after
it at the prompt. And then the line following is what the device should respond with. In the end, once
you have entered the text print("hello esp8266!") and pressed the Enter key, the output on your screen
should look exactly like it does above.

If you already know some python you can now try some basic commands here. For example:

>>> 1 + 2
3
>>> 1 / 2
0.5
>>> 12**34
4922235242952026704037113243122008064

If your board has an LED attached to GPIO2 (the ESP-12 modules do) then you can turn it on and off
using the following code:

>>> import machine
>>> pin = machine.Pin(2, machine.Pin.OUT)
>>> pin.on()
>>> pin.off()

Note that on method of a Pin might turn the LED off and off might turn it on (or vice versa), depending
on how the LED is wired on your board. To resolve this, machine.Signal class is provided.

Line editing

You can edit the current line that you are entering using the left and right arrow keys to move the cursor,
as well as the delete and backspace keys. Also, pressing Home or ctrl-A moves the cursor to the start of the
line, and pressing End or ctrl-E moves to the end of the line.

Input history

The REPL remembers a certain number of previous lines of text that you entered (up to 8 on the ESP8266).
To recall previous lines use the up and down arrow keys.
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Tab completion

Pressing the Tab key will do an auto-completion of the current word that you are entering. This can be very
useful to find out functions and methods that a module or object has. Try it out by typing “ma” and then
pressing Tab. It should complete to “machine” (assuming you imported machine in the above example).
Then type “.” and press Tab again to see a list of all the functions that the machine module has.

Line continuation and auto-indent

Certain things that you type will need “continuing”, that is, will need more lines of text to make a proper
Python statement. In this case the prompt will change to ... and the cursor will auto-indent the correct
amount so you can start typing the next line straight away. Try this by defining the following function:

>>> def toggle(p):
... p.value(not p.value())
...
...
...
>>>

In the above, you needed to press the Enter key three times in a row to finish the compound statement
(that’s the three lines with just dots on them). The other way to finish a compound statement is to press
backspace to get to the start of the line, then press the Enter key. (If you did something wrong and want to
escape the continuation mode then press ctrl-C; all lines will be ignored.)

The function you just defined allows you to toggle a pin. The pin object you created earlier should still exist
(recreate it if it doesn’t) and you can toggle the LED using:

>>> toggle(pin)

Let’s now toggle the LED in a loop (if you don’t have an LED then you can just print some text instead of
calling toggle, to see the effect):

>>> import time
>>> while True:
... toggle(pin)
... time.sleep_ms(500)
...
...
...
>>>

This will toggle the LED at 1Hz (half a second on, half a second off). To stop the toggling press ctrl-C,
which will raise a KeyboardInterrupt exception and break out of the loop.

The time module provides some useful functions for making delays and doing timing. Use tab completion
to find out what they are and play around with them!

Paste mode

Pressing ctrl-E will enter a special paste mode. This allows you to copy and paste a chunk of text into the
REPL. If you press ctrl-E you will see the paste-mode prompt:
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paste mode; Ctrl-C to cancel, Ctrl-D to finish
===

You can then paste (or type) your text in. Note that none of the special keys or commands work in paste
mode (eg Tab or backspace), they are just accepted as-is. Press ctrl-D to finish entering the text and execute
it.

Other control commands

There are four other control commands:

• Ctrl-A on a blank line will enter raw REPL mode. This is like a permanent paste mode, except that
characters are not echoed back.

• Ctrl-B on a blank like goes to normal REPL mode.

• Ctrl-C cancels any input, or interrupts the currently running code.

• Ctrl-D on a blank line will do a soft reset.

Note that ctrl-A and ctrl-D do not work with WebREPL.

6.2.3 The internal filesystem

If your devices has 1Mbyte or more of storage then it will be set up (upon first boot) to contain a filesystem.
This filesystem uses the FAT format and is stored in the flash after the MicroPython firmware.

Creating and reading files

MicroPython on the ESP8266 supports the standard way of accessing files in Python, using the built-in
open() function.

To create a file try:

>>> f = open('data.txt', 'w')
>>> f.write('some data')
9
>>> f.close()

The “9” is the number of bytes that were written with the write() method. Then you can read back the
contents of this new file using:

>>> f = open('data.txt')
>>> f.read()
'some data'
>>> f.close()

Note that the default mode when opening a file is to open it in read-only mode, and as a text file. Specify
'wb' as the second argument to open() to open for writing in binary mode, and 'rb' to open for reading
in binary mode.
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Listing file and more

The os module can be used for further control over the filesystem. First import the module:

>>> import os

Then try listing the contents of the filesystem:

>>> os.listdir()
['boot.py', 'port_config.py', 'data.txt']

You can make directories:

>>> os.mkdir('dir')

And remove entries:

>>> os.remove('data.txt')

Start up scripts

There are two files that are treated specially by the ESP8266 when it starts up: boot.py and main.py. The
boot.py script is executed first (if it exists) and then once it completes the main.py script is executed. You
can create these files yourself and populate them with the code that you want to run when the device starts
up.

Accessing the filesystem via WebREPL

You can access the filesystem over WebREPL using the web client in a browser or via the command-line
tool. Please refer to Quick Reference and Tutorial sections for more information about WebREPL.

6.2.4 Network basics

The network module is used to configure the WiFi connection. There are two WiFi interfaces, one for the
station (when the ESP8266 connects to a router) and one for the access point (for other devices to connect
to the ESP8266). Create instances of these objects using:

>>> import network
>>> sta_if = network.WLAN(network.STA_IF)
>>> ap_if = network.WLAN(network.AP_IF)

You can check if the interfaces are active by:

>>> sta_if.active()
False
>>> ap_if.active()
True

You can also check the network settings of the interface by:

>>> ap_if.ifconfig()
('192.168.4.1', '255.255.255.0', '192.168.4.1', '8.8.8.8')
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The returned values are: IP address, netmask, gateway, DNS.

Configuration of the WiFi

Upon a fresh install the ESP8266 is configured in access point mode, so the AP_IF interface is active and
the STA_IF interface is inactive. You can configure the module to connect to your own network using the
STA_IF interface.

First activate the station interface:

>>> sta_if.active(True)

Then connect to your WiFi network:

>>> sta_if.connect('<your ESSID>', '<your password>')

To check if the connection is established use:

>>> sta_if.isconnected()

Once established you can check the IP address:

>>> sta_if.ifconfig()
('192.168.0.2', '255.255.255.0', '192.168.0.1', '8.8.8.8')

You can then disable the access-point interface if you no longer need it:

>>> ap_if.active(False)

Here is a function you can run (or put in your boot.py file) to automatically connect to your WiFi network:

def do_connect():
import network
sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():

print('connecting to network...')
sta_if.active(True)
sta_if.connect('<essid>', '<password>')
while not sta_if.isconnected():

pass
print('network config:', sta_if.ifconfig())

Sockets

Once the WiFi is set up the way to access the network is by using sockets. A socket represents an endpoint
on a network device, and when two sockets are connected together communication can proceed. Internet
protocols are built on top of sockets, such as email (SMTP), the web (HTTP), telnet, ssh, among many
others. Each of these protocols is assigned a specific port, which is just an integer. Given an IP address and
a port number you can connect to a remote device and start talking with it.

The next part of the tutorial discusses how to use sockets to do some common and useful network tasks.
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6.2.5 Network - TCP sockets

The building block of most of the internet is the TCP socket. These sockets provide a reliable stream of
bytes between the connected network devices. This part of the tutorial will show how to use TCP sockets
in a few different cases.

Star Wars Asciimation

The simplest thing to do is to download data from the internet. In this case we will use the Star Wars
Asciimation service provided by the blinkenlights.nl website. It uses the telnet protocol on port 23 to stream
data to anyone that connects. It’s very simple to use because it doesn’t require you to authenticate (give a
username or password), you can just start downloading data straight away.

The first thing to do is make sure we have the socket module available:

>>> import socket

Then get the IP address of the server:

>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)

The getaddrinfo function actually returns a list of addresses, and each address has more information than
we need. We want to get just the first valid address, and then just the IP address and port of the server. To
do this use:

>>> addr = addr_info[0][-1]

If you type addr_info and addr at the prompt you will see exactly what information they hold.

Using the IP address we can make a socket and connect to the server:

>>> s = socket.socket()
>>> s.connect(addr)

Now that we are connected we can download and display the data:

>>> while True:
... data = s.recv(500)
... print(str(data, 'utf8'), end='')
...

When this loop executes it should start showing the animation (use ctrl-C to interrupt it).

You should also be able to run this same code on your PC using normal Python if you want to try it out
there.

HTTP GET request

The next example shows how to download a webpage. HTTP uses port 80 and you first need to send a
“GET” request before you can download anything. As part of the request you need to specify the page to
retrieve.

Let’s define a function that can download and print a URL:
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def http_get(url):
_, _, host, path = url.split('/', 3)
addr = socket.getaddrinfo(host, 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8'))
while True:

data = s.recv(100)
if data:

print(str(data, 'utf8'), end='')
else:

break
s.close()

Make sure that you import the socket module before running this function. Then you can try:

>>> http_get('http://micropython.org/ks/test.html')

This should retrieve the webpage and print the HTML to the console.

Simple HTTP server

The following code creates an simple HTTP server which serves a single webpage that contains a table with
the state of all the GPIO pins:

import machine
pins = [machine.Pin(i, machine.Pin.IN) for i in (0, 2, 4, 5, 12, 13, 14, 15)]

html = """<!DOCTYPE html>
<html>

<head> <title>ESP8266 Pins</title> </head>
<body> <h1>ESP8266 Pins</h1>

<table border="1"> <tr><th>Pin</th><th>Value</th></tr> %s </table>
</body>

</html>
"""

import socket
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]

s = socket.socket()
s.bind(addr)
s.listen(1)

print('listening on', addr)

while True:
cl, addr = s.accept()
print('client connected from', addr)
cl_file = cl.makefile('rwb', 0)
while True:

line = cl_file.readline()
(����)
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if not line or line == b'\r\n':
break

rows = ['<tr><td>%s</td><td>%d</td></tr>' % (str(p), p.value()) for p in pins]
response = html % '\n'.join(rows)
cl.send(response)
cl.close()

6.2.6 GPIO Pins

The way to connect your board to the external world, and control other components, is through the GPIO
pins. Not all pins are available to use, in most cases only pins 0, 2, 4, 5, 12, 13, 14, 15, and 16 can be used.

The pins are available in the machine module, so make sure you import that first. Then you can create a
pin using:

>>> pin = machine.Pin(0)

Here, the “0” is the pin that you want to access. Usually you want to configure the pin to be input or output,
and you do this when constructing it. To make an input pin use:

>>> pin = machine.Pin(0, machine.Pin.IN, machine.Pin.PULL_UP)

You can either use PULL_UP or None for the input pull-mode. If it’s not specified then it defaults to None,
which is no pull resistor. GPIO16 has no pull-up mode. You can read the value on the pin using:

>>> pin.value()
0

The pin on your board may return 0 or 1 here, depending on what it’s connected to. To make an output
pin use:

>>> pin = machine.Pin(0, machine.Pin.OUT)

Then set its value using:

>>> pin.value(0)
>>> pin.value(1)

Or:

>>> pin.off()
>>> pin.on()

External interrupts

All pins except number 16 can be configured to trigger a hard interrupt if their input changes. You can set
code (a callback function) to be executed on the trigger.

Let’s first define a callback function, which must take a single argument, being the pin that triggered the
function. We will make the function just print the pin:
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>>> def callback(p):
... print('pin change', p)

Next we will create two pins and configure them as inputs:

>>> from machine import Pin
>>> p0 = Pin(0, Pin.IN)
>>> p2 = Pin(2, Pin.IN)

An finally we need to tell the pins when to trigger, and the function to call when they detect an event:

>>> p0.irq(trigger=Pin.IRQ_FALLING, handler=callback)
>>> p2.irq(trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING, handler=callback)

We set pin 0 to trigger only on a falling edge of the input (when it goes from high to low), and set pin 2 to
trigger on both a rising and falling edge. After entering this code you can apply high and low voltages to
pins 0 and 2 to see the interrupt being executed.

A hard interrupt will trigger as soon as the event occurs and will interrupt any running code, including Python
code. As such your callback functions are limited in what they can do (they cannot allocate memory, for
example) and should be as short and simple as possible.

6.2.7 Pulse Width Modulation

Pulse width modulation (PWM) is a way to get an artificial analog output on a digital pin. It achieves this
by rapidly toggling the pin from low to high. There are two parameters associated with this: the frequency
of the toggling, and the duty cycle. The duty cycle is defined to be how long the pin is high compared with
the length of a single period (low plus high time). Maximum duty cycle is when the pin is high all of the
time, and minimum is when it is low all of the time.

On the ESP8266 the pins 0, 2, 4, 5, 12, 13, 14 and 15 all support PWM. The limitation is that they must
all be at the same frequency, and the frequency must be between 1Hz and 1kHz.

To use PWM on a pin you must first create the pin object, for example:

>>> import machine
>>> p12 = machine.Pin(12)

Then create the PWM object using:

>>> pwm12 = machine.PWM(p12)

You can set the frequency and duty cycle using:

>>> pwm12.freq(500)
>>> pwm12.duty(512)

Note that the duty cycle is between 0 (all off) and 1023 (all on), with 512 being a 50% duty. Values beyond
this min/max will be clipped. If you print the PWM object then it will tell you its current configuration:

>>> pwm12
PWM(12, freq=500, duty=512)

You can also call the freq() and duty() methods with no arguments to get their current values.

The pin will continue to be in PWM mode until you deinitialise it using:
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>>> pwm12.deinit()

Fading an LED

Let’s use the PWM feature to fade an LED. Assuming your board has an LED connected to pin 2 (ESP-12
modules do) we can create an LED-PWM object using:

>>> led = machine.PWM(machine.Pin(2), freq=1000)

Notice that we can set the frequency in the PWM constructor.

For the next part we will use timing and some math, so import these modules:

>>> import time, math

Then create a function to pulse the LED:

>>> def pulse(l, t):
... for i in range(20):
... l.duty(int(math.sin(i / 10 * math.pi) * 500 + 500))
... time.sleep_ms(t)

You can try this function out using:

>>> pulse(led, 50)

For a nice effect you can pulse many times in a row:

>>> for i in range(10):
... pulse(led, 20)

Remember you can use ctrl-C to interrupt the code.

Control a hobby servo

Hobby servo motors can be controlled using PWM. They require a frequency of 50Hz and then a duty
between about 40 and 115, with 77 being the centre value. If you connect a servo to the power and ground
pins, and then the signal line to pin 12 (other pins will work just as well), you can control the motor using:

>>> servo = machine.PWM(machine.Pin(12), freq=50)
>>> servo.duty(40)
>>> servo.duty(115)
>>> servo.duty(77)

6.2.8 Analog to Digital Conversion

The ESP8266 has a single pin (separate to the GPIO pins) which can be used to read analog voltages and
convert them to a digital value. You can construct such an ADC pin object using:

>>> import machine
>>> adc = machine.ADC(0)
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Then read its value with:

>>> adc.read()
58

The values returned from the read() function are between 0 (for 0.0 volts) and 1024 (for 1.0 volts). Please
note that this input can only tolerate a maximum of 1.0 volts and you must use a voltage divider circuit to
measure larger voltages.

6.2.9 Power control

The ESP8266 provides the ability to change the CPU frequency on the fly, and enter a deep-sleep state.
Both can be used to manage power consumption.

Changing the CPU frequency

The machine module has a function to get and set the CPU frequency. To get the current frequency use:

>>> import machine
>>> machine.freq()
80000000

By default the CPU runs at 80MHz. It can be changed to 160MHz if you need more processing power, at
the expense of current consumption:

>>> machine.freq(160000000)
>>> machine.freq()
160000000

You can change to the higher frequency just while your code does the heavy processing and then change
back when it’s finished.

Deep-sleep mode

The deep-sleep mode will shut down the ESP8266 and all its peripherals, including the WiFi (but not
including the real-time-clock, which is used to wake the chip). This drastically reduces current consumption
and is a good way to make devices that can run for a while on a battery.

To be able to use the deep-sleep feature you must connect GPIO16 to the reset pin (RST on the Adafruit
Feather HUZZAH board). Then the following code can be used to sleep and wake the device:

import machine

# configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)

# set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)

# put the device to sleep
machine.deepsleep()
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Note that when the chip wakes from a deep-sleep it is completely reset, including all of the memory. The
boot scripts will run as usual and you can put code in them to check the reset cause to perhaps do something
different if the device just woke from a deep-sleep. For example, to print the reset cause you can use:

if machine.reset_cause() == machine.DEEPSLEEP_RESET:
print('woke from a deep sleep')

else:
print('power on or hard reset')

6.2.10 Controlling 1-wire devices

The 1-wire bus is a serial bus that uses just a single wire for communication (in addition to wires for ground
and power). The DS18B20 temperature sensor is a very popular 1-wire device, and here we show how to use
the onewire module to read from such a device.

For the following code to work you need to have at least one DS18S20 or DS18B20 temperature sensor
with its data line connected to GPIO12. You must also power the sensors and connect a 4.7k Ohm resistor
between the data pin and the power pin.

import time
import machine
import onewire, ds18x20

# the device is on GPIO12
dat = machine.Pin(12)

# create the onewire object
ds = ds18x20.DS18X20(onewire.OneWire(dat))

# scan for devices on the bus
roms = ds.scan()
print('found devices:', roms)

# loop 10 times and print all temperatures
for i in range(10):

print('temperatures:', end=' ')
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom), end=' ')
print()

Note that you must execute the convert_temp() function to initiate a temperature reading, then wait at
least 750ms before reading the value.

6.2.11 Controlling NeoPixels

NeoPixels, also known as WS2812 LEDs, are full-colour LEDs that are connected in serial, are individually
addressable, and can have their red, green and blue components set between 0 and 255. They require precise
timing to control them and there is a special neopixel module to do just this.

To create a NeoPixel object do the following:
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>>> import machine, neopixel
>>> np = neopixel.NeoPixel(machine.Pin(4), 8)

This configures a NeoPixel strip on GPIO4 with 8 pixels. You can adjust the “4” (pin number) and the “8”
(number of pixel) to suit your set up.

To set the colour of pixels use:

>>> np[0] = (255, 0, 0) # set to red, full brightness
>>> np[1] = (0, 128, 0) # set to green, half brightness
>>> np[2] = (0, 0, 64) # set to blue, quarter brightness

For LEDs with more than 3 colours, such as RGBW pixels or RGBY pixels, the NeoPixel class takes a bpp
parameter. To setup a NeoPixel object for an RGBW Pixel, do the following:

>>> import machine, neopixel
>>> np = neopixel.NeoPixel(machine.Pin(4), 8, bpp=4)

In a 4-bpp mode, remember to use 4-tuples instead of 3-tuples to set the colour. For example to set the first
three pixels use:

>>> np[0] = (255, 0, 0, 128) # Orange in an RGBY Setup
>>> np[1] = (0, 255, 0, 128) # Yellow-green in an RGBY Setup
>>> np[2] = (0, 0, 255, 128) # Green-blue in an RGBY Setup

Then use the write() method to output the colours to the LEDs:

>>> np.write()

The following demo function makes a fancy show on the LEDs:

import time

def demo(np):
n = np.n

# cycle
for i in range(4 * n):

for j in range(n):
np[j] = (0, 0, 0)

np[i % n] = (255, 255, 255)
np.write()
time.sleep_ms(25)

# bounce
for i in range(4 * n):

for j in range(n):
np[j] = (0, 0, 128)

if (i // n) % 2 == 0:
np[i % n] = (0, 0, 0)

else:
np[n - 1 - (i % n)] = (0, 0, 0)

np.write()
time.sleep_ms(60)
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# fade in/out
for i in range(0, 4 * 256, 8):

for j in range(n):
if (i // 256) % 2 == 0:

val = i & 0xff
else:

val = 255 - (i & 0xff)
np[j] = (val, 0, 0)

np.write()

# clear
for i in range(n):

np[i] = (0, 0, 0)
np.write()

Execute it using:

>>> demo(np)

6.2.12 Controlling APA102 LEDs

APA102 LEDs, also known as DotStar LEDs, are individually addressable full-colour RGB LEDs, generally
in a string formation. They differ from NeoPixels in that they require two pins to control - both a Clock
and Data pin. They can operate at a much higher data and PWM frequencies than NeoPixels and are more
suitable for persistence-of-vision effects.

To create an APA102 object do the following:

>>> import machine, apa102
>>> strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)

This configures an 60 pixel APA102 strip with clock on GPIO5 and data on GPIO4. You can adjust the pin
numbers and the number of pixels to suit your needs.

The RGB colour data, as well as a brightness level, is sent to the APA102 in a certain order. Usually this is
(Red, Green, Blue, Brightness). If you are using one of the newer APA102C LEDs the green and blue
are swapped, so the order is (Red, Blue, Green, Brightness). The APA102 has more of a square lens
while the APA102C has more of a round one. If you are using a APA102C strip and would prefer to provide
colours in RGB order instead of RBG, you can customise the tuple colour order like so:

>>> strip.ORDER = (0, 2, 1, 3)

To set the colour of pixels use:

>>> strip[0] = (255, 255, 255, 31) # set to white, full brightness
>>> strip[1] = (255, 0, 0, 31) # set to red, full brightness
>>> strip[2] = (0, 255, 0, 15) # set to green, half brightness
>>> strip[3] = (0, 0, 255, 7) # set to blue, quarter brightness

Use the write() method to output the colours to the LEDs:
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>>> strip.write()

Demonstration:

import time
import machine, apa102

# 1M strip with 60 LEDs
strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)

brightness = 1 # 0 is off, 1 is dim, 31 is max

# Helper for converting 0-255 offset to a colour tuple
def wheel(offset, brightness):

# The colours are a transition r - g - b - back to r
offset = 255 - offset
if offset < 85:

return (255 - offset * 3, 0, offset * 3, brightness)
if offset < 170:

offset -= 85
return (0, offset * 3, 255 - offset * 3, brightness)

offset -= 170
return (offset * 3, 255 - offset * 3, 0, brightness)

# Demo 1: RGB RGB RGB
red = 0xff0000
green = red >> 8
blue = red >> 16
for i in range(strip.n):

colour = red >> (i % 3) * 8
strip[i] = ((colour & red) >> 16, (colour & green) >> 8, (colour & blue), brightness)

strip.write()

# Demo 2: Show all colours of the rainbow
for i in range(strip.n):

strip[i] = wheel((i * 256 // strip.n) % 255, brightness)
strip.write()

# Demo 3: Fade all pixels together through rainbow colours, offset each pixel
for r in range(5):

for n in range(256):
for i in range(strip.n):

strip[i] = wheel(((i * 256 // strip.n) + n) & 255, brightness)
strip.write()

time.sleep_ms(25)

# Demo 4: Same colour, different brightness levels
for b in range(31,-1,-1):

strip[0] = (255, 153, 0, b)
strip.write()
time.sleep_ms(250)

# End: Turn off all the LEDs
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strip.fill((0, 0, 0, 0))
strip.write()

6.2.13 Temperature and Humidity

DHT (Digital Humidity & Temperature) sensors are low cost digital sensors with capacitive humidity sensors
and thermistors to measure the surrounding air. They feature a chip that handles analog to digital conversion
and provide a 1-wire interface. Newer sensors additionally provide an I2C interface.

The DHT11 (blue) and DHT22 (white) sensors provide the same 1-wire interface, however, the DHT22
requires a separate object as it has more complex calculation. DHT22 have 1 decimal place resolution for
both humidity and temperature readings. DHT11 have whole number for both.

A custom 1-wire protocol, which is different to Dallas 1-wire, is used to get the measurements from the
sensor. The payload consists of a humidity value, a temperature value and a checksum.

To use the 1-wire interface, construct the objects referring to their data pin:

>>> import dht
>>> import machine
>>> d = dht.DHT11(machine.Pin(4))

>>> import dht
>>> import machine
>>> d = dht.DHT22(machine.Pin(4))

Then measure and read their values with:

>>> d.measure()
>>> d.temperature()
>>> d.humidity()

Values returned from temperature() are in degrees Celsius and values returned from humidity() are a
percentage of relative humidity.

The DHT11 can be called no more than once per second and the DHT22 once every two seconds for most
accurate results. Sensor accuracy will degrade over time. Each sensor supports a different operating range.
Refer to the product datasheets for specifics.

In 1-wire mode, only three of the four pins are used and in I2C mode, all four pins are used. Older sensors
may still have 4 pins even though they do not support I2C. The 3rd pin is simply not connected.

Pin configurations:

Sensor without I2C in 1-wire mode (eg. DHT11, DHT22, AM2301, AM2302):

1=VDD, 2=Data, 3=NC, 4=GND

Sensor with I2C in 1-wire mode (eg. DHT12, AM2320, AM2321, AM2322):

1=VDD, 2=Data, 3=GND, 4=GND

Sensor with I2C in I2C mode (eg. DHT12, AM2320, AM2321, AM2322):

1=VDD, 2=SDA, 3=GND, 4=SCL

You should use pull-up resistors for the Data, SDA and SCL pins.

242 Chapter 6. Quick reference for the ESP8266



MicroPython Documentation, �� 1.11

To make newer I2C sensors work in backwards compatible 1-wire mode, you must connect both pins 3 and
4 to GND. This disables the I2C interface.

DHT22 sensors are now sold under the name AM2302 and are otherwise identical.

6.2.14 Next steps

That brings us to the end of the tutorial! Hopefully by now you have a good feel for the capabilities of
MicroPython on the ESP8266 and understand how to control both the WiFi and IO aspects of the chip.

There are many features that were not covered in this tutorial. The best way to learn about them is to read
the full documentation of the modules, and to experiment!

Good luck creating your Internet of Things devices!

6.3 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the ESP8266. It also includes
a troubleshooting subsection.

6.4 General board control

The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200. Tab-completion is
useful to find out what methods an object has. Paste mode (ctrl-E) is useful to paste a large slab of Python
code into the REPL.

The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(160000000) # set the CPU frequency to 160 MHz

The esp module:

import esp

esp.osdebug(None) # turn off vendor O/S debugging messages
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)

6.5 Networking

The network module:

import network

wlan = network.WLAN(network.STA_IF) # create station interface
wlan.active(True) # activate the interface
wlan.scan() # scan for access points

(����)
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wlan.isconnected() # check if the station is connected to an AP
wlan.connect('essid', 'password') # connect to an AP
wlan.config('mac') # get the interface's MAC adddress
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses

ap = network.WLAN(network.AP_IF) # create access-point interface
ap.active(True) # activate the interface
ap.config(essid='ESP-AP') # set the ESSID of the access point

A useful function for connecting to your local WiFi network is:

def do_connect():
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
if not wlan.isconnected():

print('connecting to network...')
wlan.connect('essid', 'password')
while not wlan.isconnected():

pass
print('network config:', wlan.ifconfig())

Once the network is established the socket module can be used to create and use TCP/UDP sockets as
usual.

6.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

6.7 Timers

Virtual (RTOS-based) timers are supported. Use the machine.Timer class with timer ID of -1:

from machine import Timer

tim = Timer(-1)
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

The period is in milliseconds.
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6.8 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

Available pins are: 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, which correspond to the actual GPIO pin numbers
of ESP8266 chip. Note that many end-user boards use their own adhoc pin numbering (marked e.g. D0,
D1, …). As MicroPython supports different boards and modules, physical pin numbering was chosen as the
lowest common denominator. For mapping between board logical pins and physical chip pins, consult your
board documentation.

Note that Pin(1) and Pin(3) are REPL UART TX and RX respectively. Also note that Pin(16) is a special
pin (used for wakeup from deepsleep mode) and may be not available for use with higher-level classes like
Neopixel.

6.9 PWM (pulse width modulation)

PWM can be enabled on all pins except Pin(16). There is a single frequency for all channels, with range
between 1 and 1000 (measured in Hz). The duty cycle is between 0 and 1023 inclusive.

Use the machine.PWM class:

from machine import Pin, PWM

pwm0 = PWM(Pin(0)) # create PWM object from a pin
pwm0.freq() # get current frequency
pwm0.freq(1000) # set frequency
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin

pwm2 = PWM(Pin(2), freq=500, duty=512) # create and configure in one go

6.10 ADC (analog to digital conversion)

ADC is available on a dedicated pin. Note that input voltages on the ADC pin must be between 0v and
1.0v.

Use the machine.ADC class:
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from machine import ADC

adc = ADC(0) # create ADC object on ADC pin
adc.read() # read value, 0-1024

6.11 Software SPI bus

There are two SPI drivers. One is implemented in software (bit-banging) and works on all pins, and is
accessed via the machine.SPI class:

from machine import Pin, SPI

# construct an SPI bus on the given pins
# polarity is the idle state of SCK
# phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SPI(-1, baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputing 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

6.12 Hardware SPI bus

The hardware SPI is faster (up to 80Mhz), but only works on following pins: MISO is GPIO12, MOSI is
GPIO13, and SCK is GPIO14. It has the same methods as the bitbanging SPI class above, except for the
pin parameters for the constructor and init (as those are fixed):

from machine import Pin, SPI

hspi = SPI(1, baudrate=80000000, polarity=0, phase=0)

(SPI(0) is used for FlashROM and not available to users.)

6.13 I2C bus

The I2C driver is implemented in software and works on all pins, and is accessed via the machine.I2C class:
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from machine import Pin, I2C

# construct an I2C bus
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.readfrom(0x3a, 4) # read 4 bytes from slave device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to slave device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the slave

6.14 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time

6.15 Deep-sleep mode

Connect GPIO16 to the reset pin (RST on HUZZAH). Then the following code can be used to sleep, wake
and check the reset cause:

import machine

# configure RTC.ALARM0 to be able to wake the device
rtc = machine.RTC()
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)

# check if the device woke from a deep sleep
if machine.reset_cause() == machine.DEEPSLEEP_RESET:

print('woke from a deep sleep')

# set RTC.ALARM0 to fire after 10 seconds (waking the device)
rtc.alarm(rtc.ALARM0, 10000)

# put the device to sleep
machine.deepsleep()

6.16 OneWire driver

The OneWire driver is implemented in software and works on all pins:
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from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))

Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be
called each time you want to sample the temperature.

6.17 NeoPixel driver

Use the neopixel module:

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour

For low-level driving of a NeoPixel:

import esp
esp.neopixel_write(pin, grb_buf, is800khz)

6.18 APA102 driver

Use the apa102 module:

from machine import Pin
from apa102 import APA102

(����)
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clock = Pin(14, Pin.OUT) # set GPIO14 to output to drive the clock
data = Pin(13, Pin.OUT) # set GPIO13 to output to drive the data
apa = APA102(clock, data, 8) # create APA102 driver on the clock and the data pin for 8␣
↪→pixels
apa[0] = (255, 255, 255, 31) # set the first pixel to white with a maximum brightness of␣
↪→31
apa.write() # write data to all pixels
r, g, b, brightness = apa[0] # get first pixel colour

For low-level driving of an APA102:

import esp
esp.apa102_write(clock_pin, data_pin, rgbi_buf)

6.19 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

6.20 WebREPL (web browser interactive prompt)

WebREPL (REPL over WebSockets, accessible via a web browser) is an experimental feature available in
ESP8266 port. Download web client from https://github.com/micropython/webrepl (hosted version avail-
able at http://micropython.org/webrepl), and configure it by executing:

import webrepl_setup

and following on-screen instructions. After reboot, it will be available for connection. If you disabled
automatic start-up on boot, you may run configured daemon on demand using:

import webrepl
webrepl.start()

The supported way to use WebREPL is by connecting to ESP8266 access point, but the daemon is also
started on STA interface if it is active, so if your router is set up and works correctly, you may also use
WebREPL while connected to your normal Internet access point (use the ESP8266 AP connection method
if you face any issues).
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Besides terminal/command prompt access, WebREPL also has provision for file transfer (both upload and
download). Web client has buttons for the corresponding functions, or you can use command-line client
webrepl_cli.py from the repository above.

See the MicroPython forum for other community-supported alternatives to transfer files to ESP8266.
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Quick reference for the ESP32

The Espressif ESP32 Development Board (image attribution: Adafruit).
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Below is a quick reference for ESP32-based boards. If it is your first time working with this board it may
be useful to get an overview of the microcontroller:

7.1 General information about the ESP32 port

The ESP32 is a popular WiFi and Bluetooth enabled System-on-Chip (SoC) by Espressif Systems.

7.1.1 Multitude of boards

There is a multitude of modules and boards from different sources which carry the ESP32 chip. MicroPython
tries to provide a generic port which would run on as many boards/modules as possible, but there may
be limitations. Espressif development boards are taken as reference for the port (for example, testing is
performed on them). For any board you are using please make sure you have a datasheet, schematics and
other reference materials so you can look up any board-specific functions.

To make a generic ESP32 port and support as many boards as possible the following design and implemen-
tation decision were made:

• GPIO pin numbering is based on ESP32 chip numbering. Please have the manual/pin diagram of your
board at hand to find correspondence between your board pins and actual ESP32 pins.

• All pins are supported by MicroPython but not all are usable on any given board. For example pins
that are connected to external SPI flash should not be used, and a board may only expose a certain
selection of pins.

7.1.2 Technical specifications and SoC datasheets

The datasheets and other reference material for ESP32 chip are available from the vendor site: https:
//www.espressif.com/en/support/download/documents?keys=esp32 . They are the primary reference for
the chip technical specifications, capabilities, operating modes, internal functioning, etc.

For your convenience, some of technical specifications are provided below:

• Architecture: Xtensa Dual-Core 32-bit LX6

• CPU frequency: up to 240MHz

• Total RAM available: 528KB (part of it reserved for system)

• BootROM: 448KB

• Internal FlashROM: none

• External FlashROM: code and data, via SPI Flash; usual size 4MB

• GPIO: 34 (GPIOs are multiplexed with other functions, including external FlashROM, UART, etc.)

• UART: 3 RX/TX UART (no hardware handshaking), one TX-only UART

• SPI: 4 SPI interfaces (one used for FlashROM)

• I2C: 2 I2C (bitbang implementation available on any pins)

• I2S: 2

• ADC: 12-bit SAR ADC up to 18 channels

• DAC: 2 8-bit DACs
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• Programming: using BootROM bootloader from UART - due to external FlashROM and always-
available BootROM bootloader, the ESP32 is not brickable

For more information see the ESP32 datasheet: https://www.espressif.com/sites/default/files/
documentation/esp32_datasheet_en.pdf

MicroPython is implemented on top of the ESP-IDF, Espressif’s development framework for the ESP32.
This is a FreeRTOS based system. See the ESP-IDF Programming Guide for details.

7.2 Getting started with MicroPython on the ESP32

Using MicroPython is a great way to get the most of your ESP32 board. And vice versa, the ESP32 chip
is a great platform for using MicroPython. This tutorial will guide you through setting up MicroPython,
getting a prompt, using WebREPL, connecting to the network and communicating with the Internet, using
the hardware peripherals, and controlling some external components.

Let’s get started!

7.2.1 Requirements

The first thing you need is a board with an ESP32 chip. The MicroPython software supports the ESP32 chip
itself and any board should work. The main characteristic of a board is how the GPIO pins are connected
to the outside world, and whether it includes a built-in USB-serial convertor to make the UART available
to your PC.

Names of pins will be given in this tutorial using the chip names (eg GPIO2) and it should be straightforward
to find which pin this corresponds to on your particular board.

7.2.2 Powering the board

If your board has a USB connector on it then most likely it is powered through this when connected to
your PC. Otherwise you will need to power it directly. Please refer to the documentation for your board for
further details.

7.2.3 Getting the firmware

The first thing you need to do is download the most recent MicroPython firmware .bin file to load onto your
ESP32 device. You can download it from the MicroPython downloads page. From here, you have 3 main
choices:

• Stable firmware builds

• Daily firmware builds

• Daily firmware builds with SPIRAM support

If you are just starting with MicroPython, the best bet is to go for the Stable firmware builds. If you are
an advanced, experienced MicroPython ESP32 user who would like to follow development closely and help
with testing new features, there are daily builds. If your board has SPIRAM support you can use either
the standard firmware or the firmware with SPIRAM support, and in the latter case you will have access to
more RAM for Python objects.
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7.2.4 Deploying the firmware

Once you have the MicroPython firmware you need to load it onto your ESP32 device. There are two main
steps to do this: first you need to put your device in bootloader mode, and second you need to copy across
the firmware. The exact procedure for these steps is highly dependent on the particular board and you will
need to refer to its documentation for details.

Fortunately, most boards have a USB connector, a USB-serial convertor, and the DTR and RTS pins wired in
a special way then deploying the firmware should be easy as all steps can be done automatically. Boards that
have such features include the Adafruit Feather HUZZAH32, M5Stack, Wemos LOLIN32, and TinyPICO
boards, along with the Espressif DevKitC, PICO-KIT, WROVER-KIT dev-kits.

For best results it is recommended to first erase the entire flash of your device before putting on new
MicroPython firmware.

Currently we only support esptool.py to copy across the firmware. You can find this tool here: https:
//github.com/espressif/esptool/, or install it using pip:

pip install esptool

Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer). An older version (at least
1.2.1 is needed) works fine but will require Python 2.7.

Using esptool.py you can erase the flash with the command:

esptool.py --port /dev/ttyUSB0 erase_flash

And then deploy the new firmware using:

esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000 esp32-20180511-v1.9.4.
↪→bin

Notes:

• You might need to change the “port” setting to something else relevant for your PC

• You may need to reduce the baudrate if you get errors when flashing (eg down to 115200 by adding
--baud 115200 into the command)

• For some boards with a particular FlashROM configuration you may need to change the flash mode
(eg by adding -fm dio into the command)

• The filename of the firmware should match the file that you have

If the above commands run without error then MicroPython should be installed on your board!

7.2.5 Serial prompt

Once you have the firmware on the device you can access the REPL (Python prompt) over UART0
(GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial convertor, depending on your board.
The baudrate is 115200.

From here you can now follow the ESP8266 tutorial, because these two Espressif chips are very similar
when it comes to using MicroPython on them. The ESP8266 tutorial is found at MicroPython tutorial for
ESP8266 (but skip the Introduction section).
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7.2.6 Troubleshooting installation problems

If you experience problems during flashing or with running firmware immediately after it, here are trou-
bleshooting recommendations:

• Be aware of and try to exclude hardware problems. There are 2 common problems: bad power
source quality, and worn-out/defective FlashROM. Speaking of power source, not just raw amperage
is important, but also low ripple and noise/EMI in general. The most reliable and convenient power
source is a USB port.

• The flashing instructions above use flashing speed of 460800 baud, which is good compromise between
speed and stability. However, depending on your module/board, USB-UART convertor, cables, host
OS, etc., the above baud rate may be too high and lead to errors. Try a more common 115200 baud
rate instead in such cases.

• To catch incorrect flash content (e.g. from a defective sector on a chip), add --verify switch to the
commands above.

• If you still experience problems with flashing the firmware please refer to esptool.py project page,
https://github.com/espressif/esptool for additional documentation and a bug tracker where you can
report problems.

• If you are able to flash the firmware but the --verify option returns errors even after multiple retries
the you may have a defective FlashROM chip.

7.3 Installing MicroPython

See the corresponding section of tutorial: Getting started with MicroPython on the ESP32. It also includes
a troubleshooting subsection.

7.4 General board control

The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200. Tab-completion is
useful to find out what methods an object has. Paste mode (ctrl-E) is useful to paste a large slab of Python
code into the REPL.

The machine module:

import machine

machine.freq() # get the current frequency of the CPU
machine.freq(240000000) # set the CPU frequency to 240 MHz

The esp module:

import esp

esp.osdebug(None) # turn off vendor O/S debugging messages
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)

# low level methods to interact with flash storage
esp.flash_size()
esp.flash_user_start()

(����)
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esp.flash_erase(sector_no)
esp.flash_write(byte_offset, buffer)
esp.flash_read(byte_offset, buffer)

The esp32 module:

import esp32

esp32.hall_sensor() # read the internal hall sensor
esp32.raw_temperature() # read the internal temperature of the MCU, in Farenheit
esp32.ULP() # access to the Ultra-Low-Power Co-processor

Note that the temperature sensor in the ESP32 will typically read higher than ambient due to the IC getting
warm while it runs. This effect can be minimised by reading the temperature sensor immediately after
waking up from sleep.

7.5 Networking

The network module:

import network

wlan = network.WLAN(network.STA_IF) # create station interface
wlan.active(True) # activate the interface
wlan.scan() # scan for access points
wlan.isconnected() # check if the station is connected to an AP
wlan.connect('essid', 'password') # connect to an AP
wlan.config('mac') # get the interface's MAC adddress
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses

ap = network.WLAN(network.AP_IF) # create access-point interface
ap.config(essid='ESP-AP') # set the ESSID of the access point
ap.active(True) # activate the interface

A useful function for connecting to your local WiFi network is:

def do_connect():
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
if not wlan.isconnected():

print('connecting to network...')
wlan.connect('essid', 'password')
while not wlan.isconnected():

pass
print('network config:', wlan.ifconfig())

Once the network is established the socket module can be used to create and use TCP/UDP sockets as
usual, and the urequests module for convenient HTTP requests.
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7.6 Delay and timing

Use the time module:

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

7.7 Timers

Virtual (RTOS-based) timers are supported. Use the machine.Timer class with timer ID of -1:

from machine import Timer

tim = Timer(-1)
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))

The period is in milliseconds.

7.8 Pins and GPIO

Use the machine.Pin class:

from machine import Pin

p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
p0.on() # set pin to "on" (high) level
p0.off() # set pin to "off" (low) level
p0.value(1) # set pin to on/high

p2 = Pin(2, Pin.IN) # create input pin on GPIO2
print(p2.value()) # get value, 0 or 1

p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation

Available Pins are from the following ranges (inclusive): 0-19, 21-23, 25-27, 32-39. These correspond to
the actual GPIO pin numbers of ESP32 chip. Note that many end-user boards use their own adhoc pin
numbering (marked e.g. D0, D1, …). For mapping between board logical pins and physical chip pins consult
your board documentation.

Notes:

• Pins 1 and 3 are REPL UART TX and RX respectively

• Pins 6, 7, 8, 11, 16, and 17 are used for connecting the embedded flash, and are not recommended for
other uses
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• Pins 34-39 are input only, and also do not have internal pull-up resistors

• The pull value of some pins can be set to Pin.PULL_HOLD to reduce power consumption during deep-
sleep.

7.9 PWM (pulse width modulation)

PWM can be enabled on all output-enabled pins. The base frequency can range from 1Hz to 40MHz but
there is a tradeoff; as the base frequency increases the duty resolution decreases. See LED Control for more
details.

Use the machine.PWM class:

from machine import Pin, PWM

pwm0 = PWM(Pin(0)) # create PWM object from a pin
pwm0.freq() # get current frequency
pwm0.freq(1000) # set frequency
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin

pwm2 = PWM(Pin(2), freq=20000, duty=512) # create and configure in one go

7.10 ADC (analog to digital conversion)

On the ESP32 ADC functionality is available on Pins 32-39. Note that, when using the default configuration,
input voltages on the ADC pin must be between 0.0v and 1.0v (anything above 1.0v will just read as 4095).
Attenuation must be applied in order to increase this usable voltage range.

Use the machine.ADC class:

from machine import ADC

adc = ADC(Pin(32)) # create ADC object on ADC pin
adc.read() # read value, 0-4095 across voltage range 0.0v - 1.0v

adc.atten(ADC.ATTN_11DB) # set 11dB input attentuation (voltage range roughly 0.0v -␣
↪→3.6v)
adc.width(ADC.WIDTH_9BIT) # set 9 bit return values (returned range 0-511)
adc.read() # read value using the newly configured attenuation and width

ESP32 specific ADC class method reference:

ADC.atten(attenuation)
This method allows for the setting of the amount of attenuation on the input of the ADC. This allows
for a wider possible input voltage range, at the cost of accuracy (the same number of bits now represents
a wider range). The possible attenuation options are:

• ADC.ATTN_0DB: 0dB attenuation, gives a maximum input voltage of 1.00v - this is the default
configuration

• ADC.ATTN_2_5DB: 2.5dB attenuation, gives a maximum input voltage of approximately 1.34v
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• ADC.ATTN_6DB: 6dB attenuation, gives a maximum input voltage of approximately 2.00v

• ADC.ATTN_11DB: 11dB attenuation, gives a maximum input voltage of approximately 3.6v

��: Despite 11dB attenuation allowing for up to a 3.6v range, note that the absolute maximum voltage
rating for the input pins is 3.6v, and so going near this boundary may be damaging to the IC!

ADC.width(width)
This method allows for the setting of the number of bits to be utilised and returned during ADC reads.
Possible width options are:

• ADC.WIDTH_9BIT: 9 bit data

• ADC.WIDTH_10BIT: 10 bit data

• ADC.WIDTH_11BIT: 11 bit data

• ADC.WIDTH_12BIT: 12 bit data - this is the default configuration

7.11 Software SPI bus

There are two SPI drivers. One is implemented in software (bit-banging) and works on all pins, and is
accessed via the machine.SPI class:

from machine import Pin, SPI

# construct an SPI bus on the given pins
# polarity is the idle state of SCK
# phase=0 means sample on the first edge of SCK, phase=1 means the second
spi = SPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))

spi.init(baudrate=200000) # set the baudrate

spi.read(10) # read 10 bytes on MISO
spi.read(10, 0xff) # read 10 bytes while outputing 0xff on MOSI

buf = bytearray(50) # create a buffer
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI

spi.write(b'12345') # write 5 bytes on MOSI

buf = bytearray(4) # create a buffer
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf

��: Currently all of sck, mosi and miso must be specified when initialising Software SPI.

7.11. Software SPI bus 259



MicroPython Documentation, �� 1.11

7.12 Hardware SPI bus

There are two hardware SPI channels that allow faster transmission rates (up to 80Mhz). These may be
used on any IO pins that support the required direction and are otherwise unused (see Pins and GPIO)
but if they are not configured to their default pins then they need to pass through an extra layer of GPIO
multiplexing, which can impact their reliability at high speeds. Hardware SPI channels are limited to 40MHz
when used on pins other than the default ones listed below.

HSPI (id=1) VSPI (id=2)
sck 14 18
mosi 13 23
miso 12 19

Hardware SPI has the same methods as Software SPI above:

from machine import Pin, SPI

hspi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
vspi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18),␣
↪→mosi=Pin(23), miso=Pin(19))

7.13 I2C bus

The I2C driver is implemented in software and works on all pins, and is accessed via the machine.I2C class:

from machine import Pin, I2C

# construct an I2C bus
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)

i2c.readfrom(0x3a, 4) # read 4 bytes from slave device with address 0x3a
i2c.writeto(0x3a, '12') # write '12' to slave device with address 0x3a

buf = bytearray(10) # create a buffer with 10 bytes
i2c.writeto(0x3a, buf) # write the given buffer to the slave

7.14 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC()
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
rtc.datetime() # get date and time
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7.15 Deep-sleep mode

The following code can be used to sleep, wake and check the reset cause:

import machine

# check if the device woke from a deep sleep
if machine.reset_cause() == machine.DEEPSLEEP_RESET:

print('woke from a deep sleep')

# put the device to sleep for 10 seconds
machine.deepsleep(10000)

Notes:

• Calling deepsleep() without an argument will put the device to sleep indefinitely

• A software reset does not change the reset cause

• There may be some leakage current flowing through enabled internal pullups. To further reduce power
consumption it is possible to disable the internal pullups:

p1 = Pin(4, Pin.IN, Pin.PULL_HOLD)

After leaving deepsleep it may be necessary to un-hold the pin explicitly (e.g. if it is an output pin)
via:

p1 = Pin(4, Pin.OUT, None)

7.16 OneWire driver

The OneWire driver is implemented in software and works on all pins:

from machine import Pin
import onewire

ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
ow.scan() # return a list of devices on the bus
ow.reset() # reset the bus
ow.readbyte() # read a byte
ow.writebyte(0x12) # write a byte on the bus
ow.write('123') # write bytes on the bus
ow.select_rom(b'12345678') # select a specific device by its ROM code

There is a specific driver for DS18S20 and DS18B20 devices:

import time, ds18x20
ds = ds18x20.DS18X20(ow)
roms = ds.scan()
ds.convert_temp()
time.sleep_ms(750)
for rom in roms:

print(ds.read_temp(rom))
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Be sure to put a 4.7k pull-up resistor on the data line. Note that the convert_temp() method must be
called each time you want to sample the temperature.

7.17 NeoPixel driver

Use the neopixel module:

from machine import Pin
from neopixel import NeoPixel

pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
np[0] = (255, 255, 255) # set the first pixel to white
np.write() # write data to all pixels
r, g, b = np[0] # get first pixel colour

For low-level driving of a NeoPixel:

import esp
esp.neopixel_write(pin, grb_buf, is800khz)

��: By default NeoPixel is configured to control the more popular 800kHz units. It is possible to use
alternative timing to control other (typically 400kHz) devices by passing timing=0 when constructing
the NeoPixel object.

7.18 Capacitive Touch

Use the TouchPad class in the machine module:

from machine import TouchPad, Pin

t = TouchPad(Pin(14))
t.read() # Returns a smaller number when touched

TouchPad.read returns a value relative to the capacitive variation. Small numbers (typically in the tens) are
common when a pin is touched, larger numbers (above one thousand) when no touch is present. However the
values are relative and can vary depending on the board and surrounding composition so some calibration
may be required.

There are ten capacitive touch-enabled pins that can be used on the ESP32: 0, 2, 4, 12, 13 14, 15, 27, 32,
33. Trying to assign to any other pins will result in a ValueError.

Note that TouchPads can be used to wake an ESP32 from sleep:

import machine
from machine import TouchPad, Pin
import esp32

t = TouchPad(Pin(14))
t.config(500) # configure the threshold at which the pin is considered␣
↪→touched (����)
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esp32.wake_on_touch(True)
machine.lightsleep() # put the MCU to sleep until a touchpad is touched

For more details on touchpads refer to Espressif Touch Sensor.

7.19 DHT driver

The DHT driver is implemented in software and works on all pins:

import dht
import machine

d = dht.DHT11(machine.Pin(4))
d.measure()
d.temperature() # eg. 23 (°C)
d.humidity() # eg. 41 (% RH)

d = dht.DHT22(machine.Pin(4))
d.measure()
d.temperature() # eg. 23.6 (°C)
d.humidity() # eg. 41.3 (% RH)

7.20 WebREPL (web browser interactive prompt)

WebREPL (REPL over WebSockets, accessible via a web browser) is an experimental feature available in
ESP32 port. Download web client from https://github.com/micropython/webrepl (hosted version available
at http://micropython.org/webrepl), and configure it by executing:

import webrepl_setup

and following on-screen instructions. After reboot, it will be available for connection. If you disabled
automatic start-up on boot, you may run configured daemon on demand using:

import webrepl
webrepl.start()

# or, start with a specific password
webrepl.start(password='mypass')

The WebREPL daemon listens on all active interfaces, which can be STA or AP. This allows you to connect
to the ESP32 via a router (the STA interface) or directly when connected to its access point.

In addition to terminal/command prompt access, WebREPL also has provision for file transfer (both upload
and download). The web client has buttons for the corresponding functions, or you can use the command-line
client webrepl_cli.py from the repository above.

See the MicroPython forum for other community-supported alternatives to transfer files to an ESP32 board.
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CHAPTER 8

Quick reference for the WiPy

Below is a quick reference for CC3200/WiPy. If it is your first time working with this board please consider
reading the following sections first:
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8.1 General information about the WiPy

8.1.1 No floating point support

Due to space reasons, there’s no floating point support, and no math module. This means that floating point
numbers cannot be used anywhere in the code, and that all divisions must be performed using ‘//’ instead
of ‘/’. Example:

>>> r = 4 // 2 # this will work
>>> r = 4 / 2 # this WON'T

8.1.2 Before applying power

��: The GPIO pins of the WiPy are NOT 5V tolerant, connecting them to voltages higher than 3.6V will
cause irreparable damage to the board. ADC pins, when configured in analog mode cannot withstand
voltages above 1.8V. Keep these considerations in mind when wiring your electronics.

8.1.3 WLAN default behaviour

When the WiPy boots with the default factory configuration starts in Access Point mode with ssid that
starts with: wipy-wlan and key: www.wipy.io. Connect to this network and the WiPy will be reachable
at 192.168.1.1. In order to gain access to the interactive prompt, open a telnet session to that IP address
on the default port (23). You will be asked for credentials: login: micro and password: python

8.1.4 Telnet REPL

Linux stock telnet works like a charm (also on OSX), but other tools like putty work quite well too. The
default credentials are: user: micro, password: python. See network.Server for info on how to change
the defaults. For instance, on a linux shell (when connected to the WiPy in AP mode):

$ telnet 192.168.1.1

8.1.5 Local file system and FTP access

There is a small internal file system (a drive) on the WiPy, called /flash, which is stored within the external
serial flash memory. If a micro SD card is hooked-up and mounted, it will be available as well.

When the WiPy starts up, it always boots from the boot.py located in the /flash file system. On boot up,
the current directory is /flash.

The file system is accessible via the native FTP server running in the WiPy. Open your FTP client of choice
and connect to:

url: ftp://192.168.1.1, user: micro, password: python

See network.Server for info on how to change the defaults. The recommended clients are: Linux stock
FTP (also in OSX), Filezilla and FireFTP. For example, on a linux shell:

$ ftp 192.168.1.1
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The FTP server on the WiPy doesn’t support active mode, only passive, therefore, if using the native unix
ftp client, just after logging in do:

ftp> passive

Besides that, the FTP server only supports one data connection at a time. Check out the Filezilla settings
section below for more info.

8.1.6 FileZilla settings

Do not use the quick connect button, instead, open the site manager and create a new configuration. In
the General tab make sure that encryption is set to: Only use plain FTP (insecure). In the Transfer
Settings tab limit the max number of connections to one, otherwise FileZilla will try to open a second
command connection when retrieving and saving files, and for simplicity and to reduce code size, only one
command and one data connections are possible. Other FTP clients might behave in a similar way.

8.1.7 Upgrading the firmware Over The Air

OTA software updates can be performed through the FTP server. Upload the mcuimg.bin file to: /flash/
sys/mcuimg.bin it will take around 6s. You won’t see the file being stored inside /flash/sys/ because
it’s actually saved bypassing the user file system, so it ends up inside the internal hidden file system, but
rest assured that it was successfully transferred, and it has been signed with a MD5 checksum to verify its
integrity. Now, reset the WiPy by pressing the switch on the board, or by typing:

>>> import machine
>>> machine.reset()

Software updates can be found in: https://github.com/wipy/wipy/releases (Binaries.zip). It’s always
recommended to update to the latest software, but make sure to read the release notes before.

��: The bootloader.bin found inside Binaries.zip is there only for reference, it’s not needed for the Over
The Air update.

In order to check your software version, do:

>>> import os
>>> os.uname().release

If the version number is lower than the latest release found in the releases, go ahead and update your WiPy!

8.1.8 Boot modes and safe boot

If you power up normally, or press the reset button, the WiPy will boot into standard mode; the boot.py
file will be executed first, then main.py will run.

You can override this boot sequence by pulling GP28 up (connect it to the 3v3 output pin) during reset.
This procedure also allows going back in time to old firmware versions. The WiPy can hold up to 3 different
firmware versions, which are: the factory firmware plus 2 user updates.

After reset, if GP28 is held high, the heartbeat LED will start flashing slowly, if after 3 seconds the pin is
still being held high, the LED will start blinking a bit faster and the WiPy will select the previous user
update to boot. If the previous user update is the desired firmware image, GP28 must be released before 3
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more seconds elapse. If 3 seconds later the pin is still high, the factory firmware will be selected, the LED
will flash quickly for 1.5 seconds and the WiPy will proceed to boot. The firmware selection mechanism is
as follows:

Safe Boot Pin GP28 released during:

1st 3 secs window 2nd 3 secs window Final 1.5 secs window

Safe boot, latest
firmware is selected

Safe boot, previous
user update selected

Safe boot, the factory
firmware is selected

On all of the above 3 scenarios, safe boot mode is entered, meaning that the execution of both boot.py and
main.py is skipped. This is useful to recover from crash situations caused by the user scripts. The selection
made during safe boot is not persistent, therefore after the next normal reset the latest firmware will run
again.

8.1.9 The heartbeat LED

By default the heartbeat LED flashes once every 4s to signal that the system is alive. This can be overridden
through the wipy module:

>>> import wipy
>>> wipy.heartbeat(False)

There are currently 2 kinds of errors that you might see:

1. If the heartbeat LED flashes quickly, then a Python script (eg main.py) has an error. Use the REPL
to debug it.

2. If the heartbeat LED stays on, then there was a hard fault, you cannot recover from this, the only way
out is to press the reset switch.

8.1.10 Details on sleep modes

• machine.idle(): Power consumption: ~12mA (in WLAN STA mode). Wake sources: any hardware
interrupt (including systick with period of 1ms), no special configuration required.

• machine.lightsleep(): 950uA (in WLAN STA mode). Wake sources are Pin, RTC and WLAN

• machine.deepsleep(): ~350uA. Wake sources are Pin and RTC.

8.1.11 Additional details for machine.Pin

On the WiPy board the pins are identified by their string id:

from machine import Pin
g = machine.Pin('GP9', mode=Pin.OUT, pull=None, drive=Pin.MED_POWER, alt=-1)

You can also configure the Pin to generate interrupts. For instance:
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from machine import Pin

def pincb(pin):
print(pin.id())

pin_int = Pin('GP10', mode=Pin.IN, pull=Pin.PULL_DOWN)
pin_int.irq(trigger=Pin.IRQ_RISING, handler=pincb)
# the callback can be triggered manually
pin_int.irq()()
# to disable the callback
pin_int.irq().disable()

Now every time a falling edge is seen on the gpio pin, the callback will be executed. Caution: mechanical
push buttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques
for debouncing.

All pin objects go through the pin mapper to come up with one of the gpio pins.

For the drive parameter the strengths are:

• Pin.LOW_POWER - 2mA drive capability.

• Pin.MED_POWER - 4mA drive capability.

• Pin.HIGH_POWER - 6mA drive capability.

For the alt parameter please refer to the pinout and alternate functions table at <https://raw.
githubusercontent.com/wipy/wipy/master/docs/PinOUT.png>‘_ for the specific alternate functions that
each pin supports.

For interrupts, the priority can take values in the range 1-7. And the wake parameter has the following
properties:

• If wake_from=machine.Sleep.ACTIVE any pin can wake the board.

• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17‘‘ or GP24 can wake the
board. Note that only 1 of this pins can be enabled as a wake source at the same time, so, only the
last enabled pin as a machine.Sleep.SUSPENDED wake source will have effect.

• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17 and GP24 can wake the
board. In this case all of the 6 pins can be enabled as a machine.Sleep.HIBERNATE wake source at
the same time.

Additional Pin methods:

machine.Pin.alt_list()
Returns a list of the alternate functions supported by the pin. List items are a tuple of the form:
('ALT_FUN_NAME', ALT_FUN_INDEX)

8.1.12 Additional details for machine.I2C

On the WiPy there is a single hardware I2C peripheral, identified by “0”. By default this is the peripheral
that is used when constructing an I2C instance. The default pins are GP23 for SCL and GP13 for SDA, and
one can create the default I2C peripheral simply by doing:

i2c = machine.I2C()

The pins and frequency can be specified as:
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i2c = machine.I2C(freq=400000, scl='GP23', sda='GP13')

Only certain pins can be used as SCL/SDA. Please refer to the pinout for further information.

8.1.13 Known issues

Incompatible way to create SSL sockets

SSL sockets need to be created the following way before wrapping them with. ssl.wrap_socket:

import socket
import ssl
s = socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s)

Certificates must be used in order to validate the other side of the connection, and also to authenticate
ourselves with the other end. Such certificates must be stored as files using the FTP server, and they must
be placed in specific paths with specific names.

• The certificate to validate the other side goes in: ‘/flash/cert/ca.pem’

• The certificate to authenticate ourselves goes in: ‘/flash/cert/cert.pem’

• The key for our own certificate goes in: ‘/flash/cert/private.key’

��: When these files are stored, they are placed inside the internal hidden file system (just like firmware
updates), and therefore they are never visible.

For instance to connect to the Blynk servers using certificates, take the file ca.pem located in the blynk
examples folder. and put it in ‘/flash/cert/’. Then do:

import socket
import ssl
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s, cert_reqs=ssl.CERT_REQUIRED, ca_certs='/flash/cert/ca.pem')
ss.connect(socket.getaddrinfo('cloud.blynk.cc', 8441)[0][-1])

Incompatibilities in uhashlib module

Due to hardware implementation details of the WiPy, data must be buffered before being digested, which
would make it impossible to calculate the hash of big blocks of data that do not fit in RAM. In this case,
since most likely the total size of the data is known in advance, the size can be passed to the constructor
and hence the HASH hardware engine of the WiPy can be properly initialized without needing buffering. If
block_size is to be given, an initial chunk of data must be passed as well. When using this extension,
care must be taken to make sure that the length of all intermediate chunks (including the
initial one) is a multiple of 4 bytes. The last chunk may be of any length.

Example:

hash = uhashlib.sha1('abcd1234', 1001) # length of the initial piece is multiple of 4␣
↪→bytes
hash.update('1234') # also multiple of 4 bytes

(����)
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...
hash.update('12345') # last chunk may be of any length
hash.digest()

Unrelated function in machine module

main(filename)
Set the filename of the main script to run after boot.py is finished. If this function is not called then
the default file main.py will be executed.

It only makes sense to call this function from within boot.py.

Adhoc way to control telnet/FTP server via network module

The Server class controls the behaviour and the configuration of the FTP and telnet services running on
the WiPy. Any changes performed using this class’ methods will affect both.

Example:

import network
server = network.Server()
server.deinit() # disable the server
# enable the server again with new settings
server.init(login=('user', 'password'), timeout=600)

class network.Server(id, ...)
Create a server instance, see init for parameters of initialization.

server.init(*, login=(’micro’, ’python’), timeout=300)
Init (and effectively start the server). Optionally a new user, password and timeout (in seconds) can
be passed.

server.deinit()
Stop the server

server.timeout([timeout_in_seconds ])
Get or set the server timeout.

server.isrunning()
Returns True if the server is running, False otherwise.

Adhoc VFS-like support

WiPy doesn’t implement full MicroPython VFS support, instead following functions are defined in uos
module:

mount(block_device, mount_point, *, readonly=False)
Mounts a block device (like an SD object) in the specified mount point. Example:

os.mount(sd, '/sd')

unmount(path)
Unmounts a previously mounted block device from the given path.
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mkfs(block_device or path)
Formats the specified path, must be either /flash or /sd. A block device can also be passed like an
SD object before being mounted.

8.2 WiPy tutorials and examples

Before starting, make sure that you are running the latest firmware, for instructions see OTA How-To.

8.2.1 Introduction to the WiPy

To get the most out of your WiPy, there are a few basic things to understand about how it works.

Caring for your WiPy and expansion board

Because the WiPy/expansion board does not have a housing it needs a bit of care:

• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is well soldered and is
relatively strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the WiPy and destroy them. If you experience a lot
of static electricity in your area (eg dry and cold climates), take extra care not to shock the WiPy. If
your WiPy came in a ESD bag, then this bag is the best way to store and carry the WiPy as it will
protect it against static discharges.

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software
on the WiPy, so feel free to play around with writing code as much as you like. If the filesystem gets corrupt,
see below on how to reset it. In the worst case you might need to do a safe boot, which is explained in detail
in Boot modes and safe boot.

Plugging into the expansion board and powering on

The expansion board can power the WiPy via USB. The WiPy comes with a sticker on top of the RF
shield that labels all pins, and this should match the label numbers on the expansion board headers. When
plugging it in, the WiPy antenna will end up on top of the SD card connector of the expansion board. A
video showing how to do this can be found here on YouTube.

Expansion board hardware guide

The document explaining the hardware details of the expansion board can be found in this PDF.

Powering by an external power source

The WiPy can be powered by a battery or other external power source.

Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There
is no polarity protection on the WiPy so you must be careful when connecting anything to
VIN.

• When powering via VIN:

The input voltage must be between 3.6V and 5.5V.
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• When powering via 3V3:

The input voltage must be exactly 3V3, ripple free and from a supply capable
of sourcing at least 300mA of current

Performing firmware upgrades

For detailed instructions see OTA How-To.

8.2.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt
that you can access on the WiPy. Using the REPL is by far the easiest way to test out your code and run
commands. You can use the REPL in addition to writing scripts in main.py.

To use the REPL, you must connect to the WiPy either via telnet, or with a USB to serial converter wired
to one of the two UARTs on the WiPy. To enable REPL duplication on UART0 (the one accessible via the
expansion board) do:

>>> from machine import UART
>>> import os
>>> uart = UART(0, 115200)
>>> os.dupterm(uart)

Place this piece of code inside your boot.py so that it’s done automatically after reset.

Windows

First you need to install the FTDI drivers for the expansion board’s USB to serial converter. Then you need
a terminal software. The best option is to download the free program PuTTY: putty.exe.

In order to get to the telnet REPL:

Using putty, select Telnet as connection type, leave the default port (23) and enter the IP address of your
WiPy (192.168.1.1 when in WLAN.AP mode), then click open.

In order to get to the REPL UART:

Using your serial program you must connect to the COM port that you found in the previous step. With
PuTTY, click on “Session” in the left-hand panel, then click the “Serial” radio button on the right, then
enter you COM port (eg COM4) in the “Serial Line” box. Finally, click the “Open” button.

Mac OS X

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/tty.usbmodem* 115200

When you are finished and want to exit screen, type CTRL-A CTRL-. If your keyboard does not have a
-key (i.e. you need an obscure combination for \ like ALT-SHIFT-7) you can remap the quit command:
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• create ~/.screenrc

• add bind q quit

This will allow you to quit screen by hitting CTRL-A Q.

Linux

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/ttyUSB0 115200

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyUSB01 or a higher
number for ttyUSB. And, you may need to give yourself the correct permissions to access this devices (eg
group uucp or dialout, or use sudo).

Using the REPL prompt

Now let’s try running some MicroPython code directly on the WiPy.

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing
cursor. Press Enter and you should be presented with a MicroPython prompt, i.e. >>>. Let’s make sure it
is working with the obligatory test:

>>> print("hello WiPy!")
hello WiPy!

In the above, you should not type in the >>> characters. They are there to indicate that you should type the
text after it at the prompt. In the end, once you have entered the text print("hello WiPy!") and pressed
Enter, the output on your screen should look like it does above.

If you already know some Python you can now try some basic commands here.

If any of this is not working you can try either a hard reset or a soft reset; see below.

Go ahead and try typing in some other commands. For example:

>>> from machine import Pin
>>> import wipy
>>> wipy.heartbeat(False) # disable the heartbeat
>>> led = Pin('GP25', mode=Pin.OUT)
>>> led(1)
>>> led(0)
>>> led.toggle()
>>> 1 + 2
3
>>> 4 // 2
2
>>> 20 * 'py'
'pypypypypypypypypypypypypypypypypypypypy'
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Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the
MicroPython prompt, which performs a soft reset. You will see a message something like:

>>>
MPY: soft reboot
MicroPython v1.4.6-146-g1d8b5e5 on 2015-10-21; WiPy with CC3200
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch
(the small black button next to the heartbeat LED). During telnet, this will end your session, disconnecting
whatever program that you used to connect to the WiPy.

8.2.3 Getting started with Blynk and the WiPy

Blynk is a platform with iOS and Android apps to control Arduino, Raspberry Pi and the likes over the
Internet. You can easily build graphic interfaces for all your projects by simply dragging and dropping
widgets.

There are several examples available that work out-of-the-box with the WiPy. Before anything else, make
sure that your WiPy is running the latest software, check OTA How-To for instructions.

1. Get the Blynk library and put it in /flash/lib/ via FTP.

2. Get the Blynk examples, edit the network settings, and afterwards upload them to /flash/lib/ via
FTP as well.

3. Follow the instructions on each example to setup the Blynk dashboard on your smartphone or tablet.

4. Give it a try, for instance:

>>> execfile('01_simple.py')

8.2.4 WLAN step by step

The WLAN is a system feature of the WiPy, therefore it is always enabled (even while in machine.SLEEP),
except when deepsleep mode is entered.

In order to retrieve the current WLAN instance, do:

>>> from network import WLAN
>>> wlan = WLAN() # we call the constructor without params

You can check the current mode (which is always WLAN.AP after power up):

>>> wlan.mode()

��: When you change the WLAN mode following the instructions below, your WLAN connection to the
WiPy will be broken. This means you will not be able to run these commands interactively over the
WLAN.

There are two ways around this::
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1. put this setup code into your boot.py file so that it gets executed automatically after reset.

2. duplicate the REPL on UART , so that you can run commands via USB.

Connecting to your home router

The WLAN network card always boots in WLAN.AP mode, so we must first configure it as a station:

from network import WLAN
wlan = WLAN(mode=WLAN.STA)

Now you can proceed to scan for networks:

nets = wlan.scan()
for net in nets:

if net.ssid == 'mywifi':
print('Network found!')
wlan.connect(net.ssid, auth=(net.sec, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting
print('WLAN connection succeeded!')
break

Assigning a static IP address when booting

If you want your WiPy to connect to your home router after boot-up, and with a fixed IP address so that
you can access it via telnet or FTP, use the following script as /flash/boot.py:

import machine
from network import WLAN
wlan = WLAN() # get current object, without changing the mode

if machine.reset_cause() != machine.SOFT_RESET:
wlan.init(WLAN.STA)
# configuration below MUST match your home router settings!!
wlan.ifconfig(config=('192.168.178.107', '255.255.255.0', '192.168.178.1', '8.8.8.8

↪→'))

if not wlan.isconnected():
# change the line below to match your network ssid, security and password
wlan.connect('mywifi', auth=(WLAN.WPA2, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting

��: Notice how we check for the reset cause and the connection status, this is crucial in order to be able to
soft reset the WiPy during a telnet session without breaking the connection.
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8.2.5 Hardware timers

Timers can be used for a great variety of tasks, calling a function periodically, counting events, and generating
a PWM signal are among the most common use cases. Each timer consists of two 16-bit channels and this
channels can be tied together to form one 32-bit timer. The operating mode needs to be configured per
timer, but then the period (or the frequency) can be independently configured on each channel. By using
the callback method, the timer event can call a Python function.

Example usage to toggle an LED at a fixed frequency:

from machine import Timer
from machine import Pin
led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED
tim = Timer(3) # create a timer object using timer 3
tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
tim_ch = tim.channel(Timer.A, freq=5) # configure channel A at a frequency of␣
↪→5Hz
tim_ch.irq(handler=lambda t:led.toggle(), trigger=Timer.TIMEOUT) # toggle a LED␣
↪→on every cycle of the timer

Example using named function for the callback:

from machine import Timer
from machine import Pin
tim = Timer(1, mode=Timer.PERIODIC, width=32)
tim_a = tim.channel(Timer.A | Timer.B, freq=1) # 1 Hz frequency requires a 32 bit timer

led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED

def tick(timer): # we will receive the timer object when being called
global led
led.toggle() # toggle the LED

tim_a.irq(handler=tick, trigger=Timer.TIMEOUT) # create the interrupt

Further examples:

from machine import Timer
tim1 = Timer(1, mode=Timer.ONE_SHOT) # initialize it in␣
↪→one shot mode
tim2 = Timer(2, mode=Timer.PWM) # initialize it in␣
↪→PWM mode
tim1_ch = tim1.channel(Timer.A, freq=10, polarity=Timer.POSITIVE) # start the event␣
↪→counter with a frequency of 10Hz and triggered by positive edges
tim2_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=5000) # start the PWM on␣
↪→channel B with a 50% duty cycle
tim2_ch.freq(20) # set the frequency␣
↪→(can also get)
tim2_ch.duty_cycle(3010) # set the duty cycle␣
↪→to 30.1% (can also get)
tim2_ch.duty_cycle(3020, Timer.NEGATIVE) # set the duty cycle␣
↪→to 30.2% and change the polarity to negative
tim2_ch.period(2000000) # change the period␣
↪→to 2 seconds
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Additional constants for Timer class

Timer.PWM
PWM timer operating mode.

Timer.A

Timer.B
Selects the timer channel. Must be ORed (Timer.A | Timer.B) when using a 32-bit timer.

Timer.POSITIVE

Timer.NEGATIVE
Timer channel polarity selection (only relevant in PWM mode).

Timer.TIMEOUT

Timer.MATCH
Timer channel IRQ triggers.

8.2.6 Reset and boot modes

There are soft resets and hard resets.

• A soft reset simply clears the state of the MicroPython virtual machine, but leaves hardware peripherals
unaffected. To do a soft reset, simply press Ctrl+D on the REPL, or within a script do:

import sys
sys.exit()

• A hard reset is the same as performing a power cycle to the board. In order to hard reset the WiPy,
press the switch on the board or:

import machine
machine.reset()

Safe boot

If something goes wrong with your WiPy, don’t panic! It is almost impossible for you to break the WiPy by
programming the wrong thing.

The first thing to try is to boot in safe mode: this temporarily skips execution of boot.py and main.py and
gives default WLAN settings.

If you have problems with the filesystem you can format the internal flash drive.

To boot in safe mode, follow the detailed instructions described here.

In safe mode, the boot.py and main.py files are not executed, and so the WiPy boots up with default
settings. This means you now have access to the filesystem, and you can edit boot.py and main.py to fix
any problems.

Entering safe mode is temporary, and does not make any changes to the files on the WiPy.

Factory reset the filesystem

If you WiPy’s filesystem gets corrupted (very unlikely, but possible), you can format it very easily by doing:
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>>> import os
>>> os.mkfs('/flash')

Resetting the filesystem deletes all files on the internal WiPy storage (not the SD card), and restores the
files boot.py and main.py back to their original state after the next reset.

8.3 General board control (including sleep modes)

See the machine module:

import machine

help(machine) # display all members from the machine module
machine.freq() # get the CPU frequency
machine.unique_id() # return the 6-byte unique id of the board (the WiPy's MAC address)

machine.idle() # average current decreases to (~12mA), any interrupts wake it up
machine.lightsleep() # everything except for WLAN is powered down (~950uA avg. current)

# wakes from Pin, RTC or WLAN
machine.deepsleep() # deepest sleep mode, MCU starts from reset. Wakes from Pin and␣
↪→RTC.

8.4 Pins and GPIO

See machine.Pin.

from machine import Pin

# initialize GP2 in gpio mode (alt=0) and make it an output
p_out = Pin('GP2', mode=Pin.OUT)
p_out.value(1)
p_out.value(0)
p_out.toggle()
p_out(True)

# make GP1 an input with the pull-up enabled
p_in = Pin('GP1', mode=Pin.IN, pull=Pin.PULL_UP)
p_in() # get value, 0 or 1

8.5 Timers

See machine.TimerWiPy and machine.Pin. Timer id’s take values from 0 to 3.:

from machine import Timer
from machine import Pin

tim = Timer(0, mode=Timer.PERIODIC)
(����)
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tim_a = tim.channel(Timer.A, freq=1000)
tim_a.freq(5) # 5 Hz

p_out = Pin('GP2', mode=Pin.OUT)
tim_a.irq(trigger=Timer.TIMEOUT, handler=lambda t: p_out.toggle())

8.6 PWM (pulse width modulation)

See machine.Pin and machine.Timer.

from machine import Timer

# timer 1 in PWM mode and width must be 16 buts
tim = Timer(1, mode=Timer.PWM, width=16)

# enable channel A @1KHz with a 50.55% duty cycle
tim_a = tim.channel(Timer.A, freq=1000, duty_cycle=5055)

8.7 ADC (analog to digital conversion)

See machine.ADC .

from machine import ADC

adc = ADC()
apin = adc.channel(pin='GP3')
apin() # read value, 0-4095

8.8 UART (serial bus)

See machine.UART .

from machine import UART
uart = UART(0, baudrate=9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

8.9 SPI bus

See machine.SPI .

from machine import SPI

# configure the SPI master @ 2MHz
(����)
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spi = SPI(0, SPI.MASTER, baudrate=200000, polarity=0, phase=0)
spi.write('hello')
spi.read(5) # receive 5 bytes on the bus
rbuf = bytearray(5)
spi.write_readinto('hello', rbuf) # send and receive 5 bytes

8.10 I2C bus

See machine.I2C .

from machine import I2C
# configure the I2C bus
i2c = I2C(baudrate=100000)
i2c.scan() # returns list of slave addresses
i2c.writeto(0x42, 'hello') # send 5 bytes to slave with address 0x42
i2c.readfrom(0x42, 5) # receive 5 bytes from slave
i2c.readfrom_mem(0x42, 0x10, 2) # read 2 bytes from slave 0x42, slave memory 0x10
i2c.writeto_mem(0x42, 0x10, 'xy') # write 2 bytes to slave 0x42, slave memory 0x10

8.11 Watchdog timer (WDT)

See machine.WDT .

from machine import WDT

# enable the WDT with a timeout of 5s (1s is the minimum)
wdt = WDT(timeout=5000)
wdt.feed()

8.12 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC() # init with default time and date
rtc = RTC(datetime=(2015, 8, 29, 9, 0, 0, 0, None)) # init with a specific time and date
print(rtc.now())

def alarm_handler (rtc_o):
pass
# do some non blocking operations
# warning printing on an irq via telnet is not
# possible, only via UART

# create a RTC alarm that expires after 5 seconds
(����)
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rtc.alarm(time=5000, repeat=False)

# enable RTC interrupts
rtc_i = rtc.irq(trigger=RTC.ALARM0, handler=alarm_handler, wake=machine.SLEEP)

# go into suspended mode waiting for the RTC alarm to expire and wake us up
machine.lightsleep()

8.13 SD card

See machine.SD.

from machine import SD
import os

# clock pin, cmd pin, data0 pin
sd = SD(pins=('GP10', 'GP11', 'GP15'))
# or use default ones for the expansion board
sd = SD()
os.mount(sd, '/sd')

8.14 WLAN (WiFi)

See network.WLAN and machine.

import machine
from network import WLAN

# configure the WLAN subsystem in station mode (the default is AP)
wlan = WLAN(mode=WLAN.STA)
# go for fixed IP settings
wlan.ifconfig(config=('192.168.0.107', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
wlan.scan() # scan for available networks
wlan.connect(ssid='mynetwork', auth=(WLAN.WPA2, 'mynetworkkey'))
while not wlan.isconnected():

pass
print(wlan.ifconfig())
# enable wake on WLAN
wlan.irq(trigger=WLAN.ANY_EVENT, wake=machine.SLEEP)
# go to sleep
machine.lightsleep()
# now, connect to the FTP or the Telnet server and the WiPy will wake-up

8.15 Telnet and FTP server

See network.Server
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from network import Server

# init with new user, password and seconds timeout
server = Server(login=('user', 'password'), timeout=60)
server.timeout(300) # change the timeout
server.timeout() # get the timeout
server.isrunning() # check whether the server is running or not

8.16 Heart beat LED

See wipy.

import wipy

wipy.heartbeat(False) # disable the heartbeat LED
wipy.heartbeat(True) # enable the heartbeat LED
wipy.heartbeat() # get the heartbeat state
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